
CSE 333
Lecture 14 -- smart pointers

Last time

We learned about STL

- noticed that STL was doing an enormous amount of copying

- we were tempted to use pointers instead of objects

‣ but tricky to know who is responsible for delete’ing and when

C++ smart pointers

A smart pointer is an object that stores a pointer to a heap

allocated object

- a smart pointer looks and behaves like a regular C++ pointer

‣ how? by overloading * , -> , [] , etc.

- a smart pointer can help you manage memory

‣ the smart pointer will delete the pointed-to object at the right time, including

invoking the object’s destructor

• when that is depends on what kind of smart pointer you use

‣ so, if you use a smart pointer correctly, you no longer have to remember

when to delete new’d memory

A toy smart pointer

We can implement a simple one with:

- a constructor that accepts a pointer

- a destructor that frees the pointer

- overloaded * and -> operators that access the pointer

see toyptr/

What makes it a toy?

Can’t handle:

- arrays

- copying

- reassignment

- comparison

- ...plus many other subtleties...

Luckily, others have built non-toy smart pointers for us!

C++11’s std::unique_ptr

The unique_ptr template is part of C++’s standard

library

- available in the new C++11 standard

A unique_ptr takes ownership of a pointer

- when the unique_ptr object is delete’d or falls out of scope,

its destructor is invoked, just like any C++ object

- this destructor invokes delete on the owned pointer

Using a unique_ptr
#include <iostream> // for std::cout, std::endl

#include <memory> // for std::unique_ptr

#include <stdlib.h> // for EXIT_SUCCESS

void Leaky() {

 int *x = new int(5); // heap allocated

 (*x)++;

 std::cout << *x << std::endl;

} // never used delete, therefore leak

void NotLeaky() {

 std::unique_ptr<int> x(new int(5)); // wrapped, heap-allocated

 (*x)++;

 std::cout << *x << std::endl;

} // never used delete, but no leak

int main(int argc, char **argv) {

 Leaky();

 NotLeaky();

 return EXIT_SUCCESS;

}

unique1.cc

Why are unique_ptrs useful?

If you have many potential exits out of a function, it’s

easy to forget to call delete on all of them

- unique_ptr will delete its pointer when it falls out of scope

- thus, a unique_ptr also helps with exception safety

int NotLeaky() {

 std::unique_ptr<int> x(new int(5));

 lots of code, including several returns

 lots of code, including a potential exception throw

 lots of code

 return 1;

}

unique_ptr operations
#include <memory> // for std::unique_ptr

#include <stdlib.h> // for EXIT_SUCCESS

using namespace std;

typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {

 unique_ptr<int> x(new int(5));

 // Return a pointer to the pointed-to object

 int *ptr = x.get();

 // Return a reference to the pointed-to object

 int val = *x;

 // Access a field or function of a pointed-to object

 unique_ptr<IntPair> ip(new IntPair);

 ip->a = 100;

 // Deallocate the pointed-to object and reset the unique_ptr with

 // a new heap-allocated object.

 x.reset(new int(1));

 // Release responsibility for freeing the pointed-to object.

 ptr = x.release();

 delete ptr;

 return EXIT_SUCCESS;

}

unique2.cc

unique_ptrs cannot be copied

std::unique_ptr

disallows the use of its

copy constructor and

assignment operator

- therefore, you cannot

copy a unique_ptr

- this is what it means

for it to be “unique”

#include <memory>

#include <stdlib.h>

int main(int argc, char **argv) {

 std::unique_ptr<int> x(new int(5));

 // fail, no copy constructor

 std::unique_ptr<int> y(x);

 // succeed, z starts with NULL pointer

 std::unique_ptr<int> z;

 // fail, no assignment operator

 z = x;

 return EXIT_SUCCESS;

}

uniquefail.cc

Transferring ownership

You can use reset() and release()

- release() returns the pointer, sets wrapper’s pointer to NULL

- reset() delete’s the current pointer, acquires a new one

int main(int argc, char **argv) {

 unique_ptr<int> x(new int(5));

 cout << "x: " << x.get() << endl;

 unique_ptr<int> y(x.release()); // y takes ownership, x abdicates it

 cout << "x: " << x.get() << endl;

 cout << "y: " << y.get() << endl;

 unique_ptr<int> z(new int(10));

 // z delete's its old pointer and takes ownership of y's pointer.

 // y abdicates its ownership.

 z.reset(y.release());

 return EXIT_SUCCESS;

}

unique3.cc

Copy semantics

Assigning values typically

means making a copy

- sometimes this is what you

want

‣ assigning the value of one string

to another makes a copy

- sometimes this is wasteful

‣ returning a string and assigning it

makes a copy, even though the

returned string is ephemeral

#include <iostream>

#include <string>

std::string ReturnFoo(void) {

 std::string x("foo");

 // this return might copy

 return x;

}

int main(int argc,

 char **argv) {

 std::string a("hello");

 // copy a into b

 std::string b(a);

 // copy return value into b.

 b = ReturnFoo();

 return EXIT_SUCCESS;

}

copysemantics.cc

Move semantics

C++11 introduces

“move semantics”

- moves values from one

object to another

without copying

(“steal”)

- useful for optimizing

away temporary copies

- complex topic

‣ “rvalue references”

‣ beyond scope of 333

#include <iostream>

#include <string>

std::string ReturnFoo(void) {

 std::string x("foo");

 // this return might make a copy

 return x;

}

int main(int argc, char **argv) {

 std::string a("hello");

 // moves a to b

 std::string b = std::move(a);

 std::cout << "a: " << a << std::endl;

 std::cout << "b: " << b << std::endl;

 // moves the returned value into b.

 b = std::move(ReturnFoo());

 std::cout << "b: " << b << std::endl;

 return EXIT_SUCCESS;

}

movesemantics.cc

http://stackoverflow.com/questions/3106110/can-someone-please-explain-move-semantics-to-me

Move semantics and

unique_ptr

unique_ptr supports move semantics

- can “move” ownership from one unique_ptr to another

- old owner:

‣ post-move, its wrapped pointer is set to NULL

- new owner:

‣ pre-move, its wrapped pointer is delete’d

‣ post-move, its wrapped pointer is the moved pointer

Transferring ownership

Using move semantics

int main(int argc, char **argv) {

 unique_ptr<int> x(new int(5));

 cout << "x: " << x.get() << endl;

 unique_ptr<int> y = std::move(x); // y takes ownership, x abdicates it

 cout << "x: " << x.get() << endl;

 cout << "y: " << y.get() << endl;

 unique_ptr<int> z(new int(10));

 // z delete's its old pointer and takes ownership of y's pointer.

 // y abdicates its ownership.

 z = std::move(y);

 return EXIT_SUCCESS;

}

unique4.cc

unique_ptr and STL

unique_ptrs can be stored in STL containers!!

- but, remember that STL containers like to make lots copies

of stored objects

‣ and, remember that unique_ptrs cannot be copied

‣ how can this work??

Move semantics to the rescue

- when supported, STL containers will move rather than copy

‣ luckily, unique_ptrs support move semantics

unique_ptr and STL

see uniquevec.cc

unique_ptr and “<“

a unique_ptr implements some comparison operators

- e.g., a unique_ptr implements the “<“ operator

‣ but, it doesn’t invoke “<“ on the pointed-to objects

‣ instead, it just promises a stable, strict ordering (probably based

on the pointer address, not the pointed-to value)

- so, to use sort on vectors, you want to provide sort with a

comparison function

unique_ptr and sorting with

STL

see uniquevecsort.cc

unique_ptr, “<“ and maps

Similarly, you can use unique_ptrs as keys in a map

- good news: a map internally stores keys in sorted order

‣ so iterating through the map iterates through the keys in order

‣ under the covers, by default, “<“ is used to enforce ordering

- bad news: as before you can’t count on any meaningful

sorted order using “<“ of unique_ptrs

‣ instead, you specify a comparator when constructing the map

unique_ptr, “<“ and maps

see uniquemap.cc

unique_ptr and arrays

unique_ptr can store arrays as well

- will call delete[] on destruction

#include <memory> // for std::unique_ptr

#include <stdlib.h> // for EXIT_SUCCESS

using namespace std;

int main(int argc, char **argv) {

 // x is a unique_ptr storing an array of 5 ints

 unique_ptr<int[]> x(new int[5]);

 x[0] = 1;

 x[2] = 2;

 return EXIT_SUCCESS;

}

unique5.cc

C++11 has more smart ptrs

shared_ptr

- copyable, reference counted ownership of objects / arrays

- multiple owners have pointers to a shared object

weak_ptr

- similar to shared_ptr, but doesn’t count towards refcount

shared_ptr

A std::shared_ptr is similar to a std::unique_ptr

- but, the copy / assign operators increment a reference count rather

than transferring ownership

‣ after copy / assign, the two shared_ptr objects point to the same

pointed-to object, and the (shared) reference count is 2

- when a shared_ptr is destroyed, the reference count is

decremented

‣ when the reference count hits zero, the pointed-to object is

deleted

shared_ptr example

#include <cstdlib>

#include <iostream>

#include <memory>

int main(int argc, char **argv) {

 // x contains a pointer to an int and has reference count 1.

 std::shared_ptr<int> x(new int(10));

 {

 // x and y now share the same pointer to an int, and they

 // share the reference count; the count is 2.

 std::shared_ptr<int> y = x;

 std::cout << *y << std::endl;

 }

 // y fell out of scope and was destroyed. Therefore, the

 // reference count, which was previously seen by both x and y,

 // but now is seen only by x, is decremented to 1.

 std::cout << *x << std::endl;

 return EXIT_SUCCESS;

}

sharedexample.cc

shared_ptrs and STL

containers

Even simpler than unique_ptrs

- safe to store shared_ptrs in containers, since copy/assign

maintain a shared reference count and pointer

see sharedvec.cc

weak_ptr

If you used shared_ptr and have a cycle in the sharing

graph, the reference count will never hit zero

- a weak_ptr is just like a shared_ptr, but it doesn’t count

towards the reference count

- a weak_ptr breaks the cycle

‣ but, a weak_ptr can become dangling

cycle of shared_ptr’s

#include <memory>

using std::::shared_ptr;

class A {

 public:

 shared_ptr<A> next;

 shared_ptr<A> prev;

};

int main(int argc, char **argv) {

 shared_ptr<A> head(new A());

 head->next = shared_ptr<A>(new A());

 head->next->prev = head;

 return 0;

}

head

next

prev

next

prev

0

1 0

2

2

strongcycle.cc

breaking the cycle with

weak_ptr
#include <memory>

using std::shared_ptr;

using std::weak_ptr;

class A {

 public:

 shared_ptr<A> next;

 weak_ptr<A> prev;

};

int main(int argc, char **argv) {

 shared_ptr<A> head(new A());

 head->next = shared_ptr<A>(new A());

 head->next->prev = head;

 return 0;

}

head

next

prev

next

prev

0

1 0

1

1

weakcycle.cc

using a weak_ptr
#include <iostream>

#include <memory>

using std::shared_ptr;

using std::weak_ptr;

int main(int argc, char **argv) {

 weak_ptr<int> w;

 {

 shared_ptr<int> x;

 {

 shared_ptr<int> y(new int(10));

 w = y;

 x = w.lock();

 std::cout << *x << std::endl;

 }

 std::cout << *x << std::endl;

 }

 shared_ptr<int> a = w.lock();

 std::cout << a << std::endl;

 return 0;

}

usingweak.cc

Exercise 1

Write a C++ program that:

- has a Base class called “Query” that contains a list of strings

- has a Derived class called “PhrasedQuery” that adds a list

of phrases (a phrase is a set of strings within quotation

marks)

- uses a shared_ptr to create a list of Queries

- populates the list with a mixture of Query and PhrasedQuery

objects

- prints all of the queries in the list

Exercise 2

Implement Triple, a templated class that contains three

“things.” In other words, it should behave like std::pair,

but it should hold three objects instead of two.

- instantiate several Triple that contains shared_ptr<int>’s

- insert the Triples into a vector

- reverse the vector

See you on Wednesday!

