CSE 333

Lecture 12 - templates, STL

2

Today's goals

Templates and type-independent code

C++’s standard library

- STL containers, iterators, algorithms

These are slightly modified versions of slides prepared by Steve Gribble

Suppose that...

You want to write a function to compare two Ints:

// returns 0 if equal, 1 if wvaluel is bigger, -1 otherwise
int compare (const i1nt &valuel, const 1nt &value2) {

1f (vl < v2) return -1;

1f (v2 < vl) return 1;

return 0O;

These are slightly modified versions of slides prepared by Steve Gribble

Suppose that...

You want to write a function to compare two Iints, and you
also want to write a function to compare two strings:

4 N
// note the cool use of function overloading!

// returns 0 i1if equal, 1 if valuel is bigger, -1 otherwise
int compare (const i1nt &valuel, const 1nt &value2) {

1f (valuel < wvalue?2) return -1;

1f (value?2 < wvaluel) return 1;

return 0;

// returns 0 i1if equal, 1 if valuel is bigger, -1 otherwise
int compare(const string &valuel, const string &value2) {
1f (valuel < wvalue?2) return -1;
1f (value?Z2 < wvaluel) return 1;
return 0O;

- J

These are slightly modified versions of slides prepared by Steve Gribble

Hmm....

The two implementations of compare are nearly identical.
- we could write a compare for every comparable type

» but, that's obviously a waste; lots of redundant code!
Instead, we'd like to write “generic code”
- code that is type-independent

- code that is compile-time polymorphic across types

These are slightly modified versions of slides prepared by Steve Gribble

C++: parametric polymorphism

C++ has the notion of templates

- a function or class that accepts a type as a parameter
» you iImplement the function or class once, in a type-agnostic way

» when you invoke the function or instantiate the class, you specify
(one or more) types, or values, as arguments to it

- at compile-time, when C++ notices you using a template...

» the compliler generates specialized code using the types you
provided as parameters to the template

These are slightly modified versions of slides prepared by Steve Gribble

Function template

You want to write a function to compare two things:

/

#include <iostream>
#include <string>

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
template <class T>
int compare(const T &valuel, const T &valueZ2) {

1f (valuel < value?2) return -1;

if (value?2 < wvaluel) return 1;

return 0O;

int main(int argc, char **argv) {
std::string h("hello"), w("world");
std::cout << compare<std::string>(h, w) << std::endl;
std::cout << compare<int> (10, 20) << std::endl;
std::cout << compare<double> (50.5, 50.6) << std::endl;
return 0O;

J

These are slightly modified versions of slides prepared by Steve Gribble

functiontemplate.cc

Function template

Same thing, but letting the compiler infer the types:

-

N
#include <iostream>
#include <string>
// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
template <class T>
int compare (const T &valuel, const T &valuel) {
if (valuel < wvalue?) return -1;
if (valuez2 < wvaluel) return 1;
return 0;
}
int main(int argc, char **argv) {
std::cout << compare (10, 20) << std::endl;
std::cout << compare ("Hello", "World") << std::endl; // bug!
std::cout << compare (h, w) << std::endl; // ok
return 0;
}
/

functiontemplate infer.cc

These are slightly modified versions of slides prepared by Steve Gribble

Function template

You can use non-types (constant values) in a template:

#include <iostream>
#include <string>

template <class T, 1nt N>
vold printmultiple (const T &valuel) {
for (int 1 = 0; 1 < N; ++1)
std::cout << wvaluel << std::endl;

int main(int argc, char **argv) {
std::string h("hello");
printmultiple<std::string, 3> (h);
printmultiple<const char *,4>("hi");
printmultiple<int, 5> (10);
return 0O;

nontypeparameter.cc

These are slightly modified versions of slides prepared by Steve Gribble

What's going on underneath?

The compiler doesn’t generate any code when it sees
the templated function

- It doesn’'t know what code to generate yet, since it doesn't
know what type Is involved

When the compiler sees the function being used, then it
understands what types are involved

- It Instantiates the template and compiles it

» the compiler generates template instantiations for each type used
as a template parameter

» kind of like macro expansion

bble

This creates a problem...

#ifndef COMPARE H
#define COMPARE H

template <class T>
int comp (const T& a, const T& b);

#endif // COMPARE H

~

/

compare.h

(#include "compare.h"

template <class T>
int comp (const T& a,

{

const T& Db)

1f (a < b)
1f (b < a)
return 0;

return -1;
return 1;

_}

#include <iostream>
#include "compare.h"

using namespace std;

int main(int argc, char **argv) {
cout << comp<int> (10, 20);
cout << endl;
return 0;
}
main.cc

compare.cc

These are slightly modified versions of slides prepared by Steve Gribble

One solution

e

.

#ifndef COMPARE H
#define COMPARE H

template <class T>

int comp(const T& a, const T& b) {
1f (a < b) return -1;
1f (b < a) return 1;
return 0;

#endif // COMPARE H

#include <iostream>
#include "compare.h"

using namespace std;

int main(int argc, char **argv) {
cout << comp<int> (10, 20);
cout << endl;
return 0O;

compare.h

main.cc

These are slightly modified versions of slides prepared by Steve Gribble

Another solution

-

_

#ifndef COMPARE H
#define COMPARE H

template <class T>
int comp (const T& a,
#include "compare.cc"

#endif // COMPARE H

const T& b);

J

compare.h

-

template <class T>

int comp (const T& a,
if (a < b) return -1;
if (b < a) return 1;
return 0O;

const T& b) {

#include <iostream>
#include "compare.h"

using namespace std;

int main(int argc, char
cout << comp<int> (10,
cout << endl;
return O;

**argv) {
20);

compare.cCcc

main.cc

These are slightly modified versions of slides prepared by Steve Gribble

Class templates

Templating Is useful for classes as welll Imagine we
want a class that holds a pair of things

- we want to be able to:
» set the value of the first thing, second thing
» get the value of the first thing, second thing
» reverse the order of the things

» print the pair of things

These are slightly modified versions of slides prepared by Steve Gribble

Pair class

-
#include <iostream>

#include <string>

template <class Thing> class Pair {
public:
Pair () { }7

Thing &get first()
Thing &get second();

void set first (Thing ©me) ;
void set second(Thing ©me) ;
vold Reverse () ;

private:
Thing first ,
I

second ;

#include "Pair.cc"

.

{ return first ;

}

Pair.h

These are slightly modified versions of slides prepared by Steve Gribble

Pair class

template <class Thing>
return first ;

template <class Thing>
first = copyme;

template <class Thing>
second = copyme;

template <class Thing>
// makes *3* copies
Thing tmp = first ;
first = second ;
second = tmp;

Thing &Pair<Thing>::get second() {

void Pair<Thing>::set first(Thing ©me) {

void Pair<Thing>::set second(Thing ©me) {

void Pair<Thing>::Reverse () {

Pair.cc

These are slightly modified versions of slides prepared by Steve Gribble

Pair class

#include <iostream>
#include <string>

#include "Pair.h"

int main(int argc, char **argv) {
Pair<std::string> ps;
std::string x("foo"), y("bar");

ps.set first (x);

ps.set second(y);

ps.Reverse() ;

std::cout << ps.get first() << std::endl;

return 0;

main.cc

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/

C++'s standard library

Consists of four major pieces:
- the entire C standard library

- C++’s Input/output stream library

» std::cin, std::cout, stringstreams, fstreams, etc.

- C++’s standard template library (STL)

» containers, iterators, algorithms (sort, find, etc.), numerics

- C++'s miscellaneous library

» Strings, exceptions, memory allocation, localization

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/

STL ;)

Containers!

- a container Is an object that stores (in memory) a collection
of other objects (elements)

» Implemented as class templates, so hugely flexible

- several different classes of container
» sequence containers (vector, deque, list)

» associative containers (set, map, multiset, multimap, bitset)

- differ in algorithmic cost, supported operations

These are slightly modified versions of slides prepared by Steve Gribble

STL «(

STL containers store by value, not by reference
- when you Insert an object, the container makes a copy

- If the container needs to rearrange objects, it makes copies
» e.d., If you sort a vector, it will make many many copies

»e.d., If you insert into a map, that may trigger several copies

- what if you don’t want this (disabled copy con, or copy $$)?
» YOU can insert a wrapper object with a pointer to the object

» we'll learn about these “smart pointers” later

I nese are sIgnTly Moaimea VErsions of Siides preparea by sieve Gribble

http://www.cplusplus.com/reference/stl/vector/vector/

STL vector

A generic, dynamically resizable array

- elements are stored Iin contiguous memory locations
» elements can be accessed using pointer arithmetic if you like

» random access is O(1) time
- adding / removing from the end Is cheap (constant time)

- Inserting / deleting from middle or start is expensive (O(n))

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/stl/vector/vector/

Example

see Printer.cc, Printer.h, vectorfun.cc

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/std/iterator/

STL 1terator

Each container class has an associated iterator class
- used to iterate through elements of the container (duh!)

- some container iterators support more operations than
others

» all can be incremented (++ operator), copied, copy-cons’ed
» some can be dereferenced on RHS (e.g., X = *it;)

» some can be dereferenced on LHS (e.g., *it = X;)

» some can be decremented (-- operator)

» some support random access ([], +, -, +=, -=, <, > operators)

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/std/iterator/

Example

see vectoriterator.cc

Type inference [C++11]

the ‘auto’ keyword can be
used to infer types

- simplifies your life If, for
example, functions return
complicated types

- the expression using auto
must contain explicit
initialization for it to work

-

// Calculate and return a vector
// containing all factors of n
std: :vector<int> Factors(int n);

void foo (void) {

// Manually identified type
std: :vector<int> factsl =
Factors (324234) ;

// Inferred type
auto facts2 = Factors(12321);

// Compiler error here
auto facts3;

These are slightly modified versions of slides prepared by Steve Gribble

Type inference [C++11]

Auto and Iterators

- life becomes much simpler!

-

_

for (vector<Printer>::1terator 1t = vec.begin(); 1t < vec.end(); 1t++) |
cout << *1t << endl;

}

~

&

-

_

for (auto 1t = vec.begin();

J

cout << *it << endl;

1t < vec.end(); 1t++) {

J

These are slightly modified versions of slides prepared by Steve Gribble

Range “for’ statements
[C++11]

Syntactic sugar that emulates | // prints out a string, one
y 7 // character per line
Java’s “foreach

std: :string str(“hello’) ;
- works with any sequence-y type

for (auto ¢ : str) {
std: :cout << ¢ << endl;

» strings, Initializer lists, arrays with | 3
an explicit length defined, STL .

containers that support iterators

These are slightly modified versions of slides prepared by Steve Gribble

combining auto with range for

see vectoriterator 2011.cc

http://www.cplusplus.com/reference/algorithm/

STL algorithms

A set of functions to be used on ranges of elements

range: any sequence that can be accessed through iterators
or pointers, like arrays or some of the containers

algorithms operate directly on values using assignment or
copy constructors, rather than modifying container structure

some do not modify elements

»find, count, for_each, min_element, binary search, etc.

some do modify elements

» sort, transform, copy, swap, etc.

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/algorithm/

Example

see vectoralgos.cc

http://www.cplusplus.com/reference/sti/list/

STL list

A generic doubly-linked list
- elements are *not* stored in contiguous memory locations
» does not support random access (cannot do list[5])

- some operations are much more efficient than vectors
» constant time insertion, deletion anywhere in list

» can iterate forward or backwards

- has a built-in sort member function

» N0 copies; manipulates list structure instead of element values

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/stl/list/

Example

see listexample.cc

http://www.cplusplus.com/reference/stl/map/

STL map

A key/value table, implemented as a tree

- elements stored In sorted order

» key value must support less-than operator

- keys must be unique

» multimap allows duplicate keys

- efficient lookup (O(log n)) and insertion (O(log n)

These are slightly modified versions of slides prepared by Steve Gribble

http://www.cplusplus.com/reference/stl/map/

Example

see mapexample.cc

Exercise 1

Take one of the books from HW?2's test_tree, and:

read In the book, split it into words (you can use your HW?2)

for each word, insert the word into an STL map
» the key Is the word, the value is an integer

» the value should keep track of how many times you’ve seen the word, so
each time you encounter the word, increment its map element

» thus, build a histogram of word count

print out the histogram in order, sorted by word count

bonus: plot the histogram on a log/log scale (use excel, gnuplot, ...)

» Xaxis: log(word number), y-axis: log(word count)

bble

Exercise 2

Using the Printer.cc/.h file from lecture:
- construct a vector of lists of Printers
» 1.e., a vector container, each element is a list of Printers

- observe how many copies happen. :)
» use the “sort” algorithm to sort the vector

» use the “list.sort()" function to sort each list

These are slightly modified versions of slides prepared by Steve Gribble

See you on Monday!

These are slightly modified versions of slides prepared by Steve Gribble

