CSE 333

Lecture 10 - references, const,
classes

2

Today's goals

Useful C++ features

- references, const

Introducing C++ classes

- defining, using them

These are slightly modified versions of slides prepared by Steve Gribble

Reminder: pointers

C: a pointer Is a variable containing an address

- you can change its value to change what it is pointing to

- a pointer can contain the address of some other variable

-

int main(int argc, char **argv) {

int x = 5, vy
int *z = &x;
*z += 1; //
X += 1; //
z = &y //
*7 += 1 //

return EXIT SUCCESS;

= 10;

sets

sets

sets
sets

X
X

Z
Y

to 6
(and therefore *2z)

to the address of vy
(and therefore *2z)

to 7

to 11

pointer.cc

~

J

X 5
Y 10
7 P

e slightly modified versions of slides prepared by Steve Gribble

Reminder: pointers

C: a pointer Is a variable containing an address

- you can change its value to change what it is pointing to

- a pointer can contain the address of a different variable

-

int main(int argc, char **argv) {

int x = 5, vy
int *z = &x;
*z += 1; //
X += 1; //
z = &y //
*7 += 1 //

return EXIT SUCCESS;

= 10;

sets

sets

sets
sets

X
X

Z
Y

to 6
(and therefore *2z)

to the address of vy
(and therefore *2z)

to 7

to 11

pointer.cc

~

J

r**

10

N

A

Oxbflf2d4

e slightly modified versions of slides prepared by Steve Gribble

Reminder: pointers

C: a pointer Is a variable containing an address

- you can change its value to change what it is pointing to

- a pointer can contain the address of a different variable

-

int main(int argc, char **argv) {

int x = 5, vy
int *z = &x;
*z += 1; //
X += 1; //
z = &y //
*7 += 1 //

return EXIT SUCCESS;

= 10;

sets

sets

sets
sets

X
X

Z
Y

to 6
(and therefore *2z)

to the address of vy
(and therefore *2z)

to 7

to 11

pointer.cc

~

J

r**

10

N

A

Oxbf1f2d4

e slightly modified versions of slides prepared by Steve Gribble

Reminder: pointers

C: a pointer Is a variable containing an address

- you can change its value to change what it is pointing to

- a pointer can contain the address of a different variable

-

int main(int argc, char **argv) {

int x = 5, vy
int *z = &x;
*z += 1; //
X += 1; //
z = &y //
*7 += 1 //

return EXIT SUCCESS;

= 10;

sets

sets

sets
sets

X
X

Z
Y

to 6
(and therefore *2z)

to the address of vy
(and therefore *2z)

to 7

to 11

pointer.cc

~

J

r**

10

N

A

Oxbf1f2d4

e slightly modified versions of slides prepared by Steve Gribble

Reminder: pointers

C: a pointer Is a variable containing an address

- you can change its value to change what it is pointing to

- a pointer can contain the address of a different variable

-

int main(int argc, char **argv) {

int x = 5, vy
int *z = &x;
*z += 1; //
X += 1; //
z = &y //
*7 += 1 //

return EXIT SUCCESS;

= 10;

sets

sets

sets
sets

X
X

Z
Y

to 6
(and therefore *2z)

to the address of vy
(and therefore *2z)

to 7

to 11

pointer.cc

~

J

C

10

e slightly modified versions of slides prepared by Steve Gribble

N

OxbfledO

Reminder: pointers

C: a pointer Is a variable containing an address
- you can change its value to change what it is pointing to

- a pointer can contain the address of a different variable

4 I

int main(int argc, char **argv) { < 7
int x = 5, y = 10;
int *z = &x;
*z += 1; // sets *z (and therefore x) to 6 Y 11
X += 1; // sets x (and therefore *z) to 7 ‘
zZ = &Y; // sets z to the address of vy ‘}
*z += 1; // sets *z (and therefore y) to 11 4 Oxbf#£2d0
return EXIT SUCCESS;

} .

pointer.cc e slightly modified versions of slides prepared by Steve Gribble

- J

References

C++: Introduces references as part of the language

- a reference acts like an alias for some other variable

» allas: another name that is bound to the aliased variable

» mutating a reference Is mutating the referenced variable

- L
int main(int

int x = 5,
int &z = x;

z += 1; //
X +=1; //

zZ = y; //
z += 1; //

return EXIT

argc, char **argv) {
y = 10;
// binds the name

sets z (and thus x)
sets x (and thus 2z)

sets z (and thus x)
sets z (and thus x)

 SUCCESS;

"z" to variable x

6
7

the value of vy

11

referencel.cc

~

J

hodified versions of slides prepared by Steve Gribble

References

C++: Introduces references as part of the language

a reference i1s an alias for some other variable

» allas: another name that is bound to the aliased variable

» mutating a reference Is mutating the referenced variable

-

int x = 5,

int &z = x;
z +=1; //
x +=1; //
zZ = y; //

z += 1; //

return EXIT

int main(int argc, char **argv)

y = 10;

{

// binds the name

sets z (and thus
sets x (and thus

sets z (and thus
sets z (and thus

 SUCCESS;

nwon
Z

to variable x

6
7

the value of vy

11

referencel.cc

~

J

hodified versions of slides prepared by Steve Gribble

References

C++: Introduces references as part of the language

a reference i1s an alias for some other variable

» allas: another name that is bound to the aliased variable

» mutating a reference Is mutating the referenced variable

-

int x = 5,

int &z = x;
z +=1; //
x +=1; //
zZ = y; //

z += 1; //

return EXIT

int main(int argc, char **argv)

y = 10;

{

// binds the name

sets z (and thus
sets x (and thus

sets z (and thus
sets z (and thus

 SUCCESS;

nwon
Z

to variable x

6
7

the value of vy

11

referencel.cc

~

J

hodified versions of slides prepared by Steve Gribble

References

C++: Introduces references as part of the language

a reference i1s an alias for some other variable

» allas: another name that is bound to the aliased variable

» mutating a reference Is mutating the referenced variable

-

int x = 5,

int &z = x;
z +=1; //
x +=1; //
zZ = y; //

z += 1; //

return EXIT

int main(int argc, char **argv)

y = 10;

{

// binds the name

sets z (and thus
sets x (and thus

sets z (and thus
sets z (and thus

 SUCCESS;

nwon
Z

to variable x

6
7

the value of vy

11

referencel.cc

~

J

hodified versions of slides prepared by Steve Gribble

References

C++: Introduces references as part of the language

- areference is an alias for some other variable
» allas: another name that is bound to the aliased variable

» mutating a reference Is mutating the referenced variable

4 N
int main(int argc, char **argv) {

int x =5, y = 10;

int &z = x; // binds the name "z" to variable x X,z 10
z += 1; // sets z (and thus x) to 6
x += 1; // sets x (and thus z) to 7

= z = y; // sets z (and thus x) to the value of y
z += 1; // sets z (and thus x) to 11

return EXIT SUCCESS;

} referencel.cc
_ __hodified versions of slides prepared by Steve Gribble

References

C++: Introduces references as part of the language

- areference is an alias for some other variable
» allas: another name that is bound to the aliased variable

» mutating a reference Is mutating the referenced variable

4 N
int main(int argc, char **argv) {

int x =5, y = 10;

int &z = x; // binds the name "z" to variable x X,z 11
z += 1; // sets z (and thus x) to 6
x += 1; // sets x (and thus z) to 7

z = y; // sets z (and thus x) to the value of y
s z += 1; // sets z (and thus x) to 11

return EXIT SUCCESS;

} referencel.cc
_ __hodified versions of slides prepared by Steve Gribble

Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax

»function uses reference parameters with normal syntax

» modifying a reference parameter modifies the caller’'s argument

-

_

vold swap (int &x, int &y) {
int tmp = x;
X = y;
y = tmp;

}

int main(int argc, char **argv)

int a =5, b = 10;
swap (a, b);
cout << "a: " <K a << "; b:

return EXIT SUCCESS;
J

{

" << b << endl;

passbyreference.cc

~

(main) a

b

10

(main)

)

nese are slightly modified versions of slides prepared by Steve Gribble

Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax

»function uses reference parameters with normal syntax

» modifying a reference parameter modifies the caller’'s argument

-

_

vold swap (int &x, int &y) {
int tmp = x;
X = y;
y = tmp;

}

int main(int argc, char **argv)

int a =5, b = 10;
swap (a, b);
cout << "a: " <K a << "; b:

return EXIT SUCCESS;
J

{

" << b << endl;

passbyreference.cc

~

(main) a

b

10

(main)

)

nese are slightly modified versions of slides prepared by Steve Gribble

Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax

»function uses reference parameters with normal syntax

» modifying a reference parameter modifies the caller’'s argument

_»fvoid swap (int &x, int &y) { A
int tmp = x;
X =y
y = Ttmp;
}
int main(int argc, char **argv) {
int a = 5, b = 10;
swap (a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS;
} passbyreference.cc
- /

(swap) tmp 7
(main) a

5
(swap) X
(main) b 10
(swap) y

nese are slightly modified versions of slides prepared by Steve Gribble

Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax

»function uses reference parameters with normal syntax

» modifying a reference parameter modifies the caller’'s argument

-
vold swap (int &x, int &y) {
—) int tmp = x;
X = y;
y = Ttmp;

}

int main(int argc, char **argv)
int a =5, b 10;

swap (a, b);
cout << "a: " <K a << "y
return EXIT SUCCESS;

}

b:

_

{

" << b << endl;

passbyreference.cc

~

(swap) tmp 5
(main) a

5
(swap) X
(main) b 10
(swap) y

)

nese are slightly modified versions of slides prepared by Steve Gribble

Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax

»function uses reference parameters with normal syntax

» modifying a reference parameter modifies the caller’'s argument

4 , , ,)
vold swap (int &x, 1nt &y) {
int tmp = x;
— X =Y
y = Ttmp;
}
int main(int argc, char **argv) {
int a = 5, b = 10;
swap (a, b);
cout << Ma: " << a <<« "; b: " << b << endl;
return EXIT SUCCESS;
} passbyreference.cc
NG J

(swap) tmp 0
(main) a 10
(swap) X
(main) b 10
(swap) y

nese are slightly modified versions of slides prepared by Steve Gribble

Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax

»function uses reference parameters with normal syntax

» modifying a reference parameter modifies the caller’'s argument

4 , , ,)
vold swap (int &x, 1nt &y) {
int tmp = x;
X =y
= y = tmp;
}
int main(int argc, char **argv) {
int a = 5, b = 10;
swap (a, b);
cout << "a: " <K<K a << "; b: " << b << endl;
return EXIT SUCCESS;
} passbyreference.cc
NG J

(swap) tmp 5
(maln) a 10
(swap) X
(main) b

5
(swap) y

nese are slightly modified versions of slides prepared by Steve Gribble

Pass by reference

C++ allows you to truly pass-by-reference

- client passes in an argument with normal syntax

»function uses reference parameters with normal syntax

» modifying a reference parameter modifies the caller’'s argument

4 , , , N
vold swap (int &x, 1nt &y) {
int tmp = x;
X =y
y = Ttmp;
}
int main(int argc, char **argv) {
int a = 5, b = 10;
swap (a, b);
e cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS;
} B passbyreference.cc
- /

(main) a 10

(main) b 5

nese are slightly modified versions of slides prepared by Steve Gribble

const

const: cannot be changed

- used much more in C++ thanin C

-

int 3 = 2;
BrokenPrintSquare (j) ;
return EXIT SUCCESS;

J
\

vold BrokenPrintSquare (const int &1i) {
i =1i*i; // Compiler error here!
std::cout << 1 << std::endl;

int main(int argc, char **argv) {

brokenpassbyrefconst. cc;

These are slightly modified versions of slides prepared by Steve Gribble

const

const’'s syntax Is confusing

. . .
int main(int argc,

int x = 5;
const int y = 6;
y++; //

char **argv) {
// x 1is an int
// y 1is a

compiler error

int *z =
//
//

const
*z += 1,
z++;

&y; // z is a
compller error
ok
int *const w = // w 1s a
*w += 1; // ok

w++; // compiler error

&X;

&x; // v is a
// compiler error
// compiler error

const 1nt *const v =
*v o+= 1
Vt+;

return EXIT_SUCCESS;

(const int)

(variable pointer)

(const poilnter)

to a (const int)

(variable int)

Tto a

(const pointer) to a (const 1int)

constmadness.cc

J

These are slightly modified versions of slides prepared by Steve Gribble

style guide tip

use const reference parameters to pass input

use pointers to pass output parameters

- Input parameters first, then output parameters last

-
#include <cstdlib>

void CalcArea (const int &width, const 1nt &height,
int *const area) {
*area = width * height;
}

int main(int argc, char **argv) {
int w = 10, h = 20, a;

CalcArea(w, h, &a);

return EXIT SUCCESS;
} styleguide.cc
- /

These are slightly modified versions of slides prepared by Steve Gribble

Classes

class declaration syntax (in a .h file)

class Name {

private:
members;

public:
members;

}s

class member definition syntax (in a .cc file)

returntype classname: :methodname(parameters) {
statements;

¥

-You can name your .cc, .h file anything (unlike Java)

» typically name them Classname.cc, Classname.h

These are slightly modified versions of slides prepared by Steve Gribble

h file

#ifndef POINT H
#define POINT H

class Point {

public:
Point (const int x, const int y); // constructor
int get x() const { return x ; } // inline member function
int get y() const { return y ; } // inline member function

double Distance (const Point &p) const; // member function
void SetLocation(const int x, const int y); // member function

private:
int x ; // data member
int y ; // data member
}; // class Point

tendif // _POINT_H_

NG J
Point.h

These are slightly modified versions of slides prepared by Steve Gribble

.cc file

-

~
#include <cmath>
#include "Point.h"
Point::Point (const int x, const int y) {
X = X;
this->y =vy; // “this->" is optional, unless names conflict
}
double Point::Distance (const Point &p) const {
// We can access p s x and y variables either through the
// get x(), get vy () accessor functions, or the x , y private
// member variables directly, since we re in a member
// function of the same class.
double distance = (x - p.get x()) * (x - p.get x());
distance += (y_ - p.y) * (y_ - p.y_);
return sqgrt (distance);
}
vold Point::SetLocation (const int x, const int y) {
X = X;
Y = ¥Ys
} .
Polnt.cc

These are slightly modified versions of slides prepared by Steve Gribble

.cc file with main()

4 I
#include <iostream>

#include "Point.h"

using namespace std;

// ‘main’ is defined in the global name space.
// There can be only one (not one per class, as in Java).
int main(int argc, char **argv) {

Point pl (1, 2); // stack allocate a new Point

Point p2 (4, 6); // stack allocate a new Point

cout << "pl 1is: (" << pl.get x() << ", ";
cout << pl.get y () << ")" << endl;

cout << "p2Z2 1is: (" << pZ2.get x() << ", ";
cout << pZ.get y() << ")" << endl;

cout << "dist : " << pl.Distance(p2) << endl;

return 0;

- J

usepolint.cc

These are slightly modified versions of slides prepared by Steve Gribble

Exercise 1

Write a C++ program that:
- has a class representing a 3-dimensional point

- has the following methods:
» return the inner product of two 3d points
»return the distance between two 3d points

» accessors and mutators for the x, y, z coordinates

These are slightly modified versions of slides prepared by Steve Gribble

See you on Wednesday!

These are slightly modified versions of slides prepared by Steve Gribble

