
CSE 333
Lecture 9 - intro to C++

Today’s goals

An introduction to C++

- some shortcomings of C that C++ addresses

- give you one perspective on how to learn C++

- kick the tires and write some code

C

We had to work hard to mimic encapsulation, abstraction

- encapsulation: hiding implementation details

‣ used header file conventions and the “static” specifier to separate private

functions from public functions

‣ cast structures to (void *) to hide implementation-specific details

- abstraction: associating behavior with encapsulated state

‣ the functions that operate on a LinkedList were not really tied to the linked list

structure

• we passed a linked list to a function, rather than invoking a method on a

linked list instance

• we rely on the user of the code to make correct associations; the

language provides little

C++

A major addition is its support for object-orientedness

- classes

‣ public, private, and protected methods and instance variables

‣ (multiple!) inheritance

- polymorphism

‣ static polymorphism: multiple functions or methods with the same

name, but different argument types

‣ dynamic polymorphism: derived classes can overload methods of

parents, and methods will be dispatched correctly

C

We had to emulate generic data structures

- customer passes a (void *) as a payload to a linked list

- customer had to pass in function pointers so that the linked

list could operate on payloads correctly

‣ comparisons, deallocation, pickling up state, etc.

C++

Supports templates to facilitate generic data types!

- to declare that x is a vector of ints:

‣ vector<int> x;

- to declare that x is a vector of floats:

‣ vector<float> x;

- to declare that x is a vector of (vectors of floats):

‣ vector<vector<float>> x;

C

We had to be careful about namespace collisions

- C distinguishes between external and internal linkage

‣ use “static” to prevent a name from being visible outside a module

‣ otherwise, a name is global -- visible everywhere

- we used naming conventions to help avoid collisions in the

global namespace

‣ LLIteratorNext, HTIteratorNext, etc.

C++

Permits a module to define its own namespace!

- the linked list module could define an “LL” namespace

- the hashtable module could define an “HT” namespace

- both modules could define an Iterator class

‣ one would be globally named LL::Iterator

‣ the other would be globally named HT::Iterator

C

C does not provide any standard data structures

- we had to implement our own linked list and hash table

‣ There are libraries, but none have anything close to universal adoption

- as a C programmer, you often re-invent the wheel badly

‣ maybe if you’re clever you’ll use somebody else’s libraries

‣ but, C’s lack of abstraction, encapsulation, and generics means

you’ll probably have to tweak them, or tweak your code to use

them

C++

The C++ standard library is rich!

- generic containers: bitset, queue, list, associative array

(including hash table), deque, set, stack, and vector

‣ and, iterators for most of these

- a string class: hides the implementation of strings

- streams: allows you to stream data to and from objects,

consoles, files, strings, and so on

- and more...

C

Error handling is a pain

- have to define error codes and return them

- customers have to understand error code conventions, and

need to constantly test return values

- if a() calls b() calls c()

‣ a depends on b to propagate an error in c back to it

C++

Supports exceptions!

- try / throw / catch

if used with discipline, can simplify error processing

- but, if used carelessly, can complicate memory

management

- consider: a() calls b() calls c()

‣ if c() throws an exception that b() doesn’t catch, you might not

get a chance to clean up resources allocated inside b()

Some tasks still hurt in C++

Memory management

- C++ has no garbage collector

‣ you have to manage memory allocation and deallocation, and

track ownership of memory

‣ it’s still possible to have leaks, double frees, and so on

- but, there are some things that help

‣ “smart pointers”

• classes that encapsulate pointers and track reference counts

• deallocate memory when the reference count goes to zero

Some tasks still hurt in C++

C++ doesn’t guarantee type or memory safety

- You can still...

‣ forcibly cast pointers between incompatible types

‣ walk off the end of an array and smash the stack

‣ have dangling pointers

‣ conjure up a pointer to an address of your choosing

C++ has many, many features.

Operator overloading

- your class can define methods for handling “+”, “->”, etc!

Object constructors, destructors

- particularly handy for stack-allocated objects

Reference types

- truly pass-by-reference instead of pass-by-value

Advanced OO

- multiple inheritance, virtual base classes, dynamic dispatch

How to think about C++

set of styles

and ways to

use C++

set of styles

and ways to

use C

good styles

and robust

engineering

practices

style

guides

Our first C++ progam:

helloworld.c

A C program is a C++ program.

• This means the C++ compiler must allow the ugly things

that C allows, but…

• It can provide “better” ways to do those things, and…

• It can support things beyond what C supports

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

 printf(“Hello, World!\n”);

 return EXIT_SUCCESS;

}

helloworld.c

C++: helloworld.cc

Looks simple enough...

- compile with g++ instead of gcc:

‣ g++ -Wall -std=gnu++0x -o helloworld helloworld.cc

- let’s walk through the program step by step

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

Hello, world!

Looks simple enough...

- compile with g++ instead of gcc:

‣ g++ -Wall -std=gnu++0x -o helloworld helloworld.cc

- let’s walk through the program step by step

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

iostream.h is part of the C++ standard library

- note you don’t need to add the “.h” when you include

standard library headers

‣ but you do for local headers (e.g., #include “ll.h”)

- iostream declares stream object instances, including

std::cin, std::cout, std::cerr, in the “std” namespace

helloworld.cc

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

cstdlib is the C standard library’s stdlib.h header

- (nearly) all C standard library functions are available to you

‣ for header foo.h, you should #include <cfoo>

- we need it for EXIT_SUCCESS, as usual

helloworld.cc

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

std::cout is the “cout” object instance declared by

iostream.h, living within the “std” namespace

- std::cout is an object of class ostream

‣ Think System.out from Java

‣ http://www.cplusplus.com/reference/iostream/ostream/

- used to format and write output to the console

helloworld.cc

http://www.cplusplus.com/reference/iostream/ostream/
http://www.cplusplus.com/reference/iostream/ostream/

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

C++ distinguishes between objects and primitive types

- primitive types include all the familiar ones from C

‣ char, short, unsigned long, float, double, long double, etc.

‣ and, C++ defines “bool” as a primitive type

helloworld.cc

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

“<<” is an operator defined by the C++ language

- it’s defined by C as well; in C/C++, it left shifts the

bits of integers

- but, C++ allows classes to overload operators

‣ the ostream class overloads “<<”

• i.e., it defines methods that are invoked when an ostream is

the LHS of the << operator

helloworld.cc

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

ostream has many different methods to handle <<

- the methods differ in the type of the RHS of <<

- if you do std::cout << “foo”;

‣ C++ invokes cout’s method to handle “<<” with RHS “char *”

helloworld.cc

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

the ostream class’s methods that handle “<<” return (a

reference to) themselves

- so, when (std::cout << “Hello, World!”) is evaluated:

‣ a method of the std::cout object is invoked

‣ it buffers the string “Hello, World!” for the console

‣ and, it returns (a reference to) std::cout

helloworld.cc

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

Hello, world!

next, a method on std::cout to handle “<<” is invoked

- this time, the RHS is std::endl

- turns out this is a pointer to a “manipulator” function

‣ this manipulator function writes newline to the ostream it

is invoked on, and then flushes the ostream’s buffer

‣ so, something is printed on the console at this point

helloworld.cc

Wow...

You should be surprised and scared at this point

- C++ makes it easy to hide a significant amount of

complexity

‣ it’s powerful, but really dangerous

‣ once you mix together templates, operator overloading, method

overloading, generics, and multiple inheritance, and it gets really

hard to know what’s actually happening!

#include <iostream>

#include <cstdlib>

int main(int argc, char **argv) {

 std::cout << "Hello, World!" << std::endl;

 return EXIT_SUCCESS;

}

helloworld.cc

Refining it a bit...

C++’s standard library has a std::string class!

- include the string.h header to use it

- http://www.cplusplus.com/reference/string/

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char **argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/

Refining it a bit...

The “using” keyword introduces part of a namespace, or

an entire namespace, into the current region

- using namespace std; -- imports all names from std::

- using std::cout; -- imports only std::cout

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char **argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

Refining it a bit...

We’re instantiating a std::string object on the stack

- passing the C string “Hello, World!” to its constructor method

‣ hello is deallocated (and its destructor invoked) when main

returns

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char **argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

Refining it a bit...

The C++ string library overloads the << operator as well

- defines a function (not an object method) that is invoked

when the LHS is an ostream and the RHS is a std::string

‣ http://www.cplusplus.com/reference/string/operator<</

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char **argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

http://www.cplusplus.com/reference/string/operator%3C%3C/

Refining it a bit...

Note the side-effect of using namespace std;

- can now refer to std::string by string, std::cout by cout, and

std::endl by endl

#include <iostream>

#include <cstdlib>

#include <string>

using namespace std;

int main(int argc, char **argv) {

 string hello("Hello, World!");

 cout << hello << endl;

 return EXIT_SUCCESS;

}

helloworld2.cc

string concatenation

The string class overloads the “+” operator

- creates and returns a new string that is the concatenation of

LHS and RHS

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char **argv) {

 string hello("Hello");

 hello = hello + " there";

 cout << hello << endl;

 return EXIT_SUCCESS;

}

concat.cc

string assignment

The string class overloads the “=” operator

- copies the RHS and replaces the string’s contents with it

‣ so, the full statement (a) “+” creates a string that is the

concatenation of hello’s current contents and “ there”, and

(b) “=” creates a copy of the concatenation to store in hello

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char **argv) {

 string hello("Hello");

 hello = hello + " there";

 cout << hello << endl;

 return EXIT_SUCCESS;

}

concat.cc

stream manipulators

iomanip.h defines a set of stream manipulator functions

- pass them to a stream to affect formatting

‣ http://www.cplusplus.com/reference/iostream/manipulators/

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

 cout << hex << 16 << " " << 13 << endl;

 cout << dec << 16 << " " << 13 << endl;

 return EXIT_SUCCESS;

}

helloworld3.cc

http://www.cplusplus.com/reference/iostream/manipulators/

stream manipulators

setw(x) sets the width of the next field to x

- only affects the next thing sent to the output stream

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

 cout << hex << 16 << " " << 13 << endl;

 cout << dec << 16 << " " << 13 << endl;

 return EXIT_SUCCESS;

}

helloworld3.cc

stream manipulators

hex sets the stream to output integers in hexadecimal

- stays in effect until you set the stream to some other base

- hex, dec, oct are your choices

#include <iostream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;

 cout << hex << 16 << " " << 13 << endl;

 cout << dec << 16 << " " << 13 << endl;

 return EXIT_SUCCESS;

}

helloworld3.cc

You can still use printf, though

C is (roughly) a subset of C++

#include <cstdio>

#include <cstdlib>

int main(int argc, char **argv) {

 printf("hello from C\n");

 return EXIT_SUCCESS;

}

helloworld4.cc

Reading

std::cin is an object instance of class istream

- supports the >> operator for “extraction”

- cin also has a getline() method

#include <iostream>

#include <cstdlib>

using namespace std;

int main(int argc, char **argv) {

 int num;

 cout << "Type a number: ";

 cin >> num;

 cout << "You typed: " << num << endl;

 return EXIT_SUCCESS;

}

helloworld5.cc

Exercise 1

Write a C++ program that:

- uses streams to:

‣ prompts the user to type in 5 floats

‣ prints them out in opposite order

‣ with 4 digits of precision

