CSE 333

Lecture 9 - intro to C++




Today's goals

An introduction to C++
- some shortcomings of C that C++ addresses
- glve you one perspective on how to learn C++

- kick the tires and write some code
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C

We had to work hard to mimic encapsulation, abstraction

- encapsulation: hiding implementation details

» used header file conventions and the “static” specifier to separate private
functions from public functions

» cast structures to (void *) to hide implementation-specific details
- abstraction: associating behavior with encapsulated state

»  the functions that operate on a LinkedList were not really tied to the linked list
structure

we passed a linked list to a function, rather than invoking a method on a
linked list instance

we rely on the user of the code to make correct associations; the
language provides little
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C++

A major addition Is Its support for object-orientedness

- classes

» public, private, and protected methods and instance variables

»  (multiple!) inheritance
- polymorphism

»  static polymorphism: multiple functions or methods with the same
name, but different argument types

» dynamic polymorphism: derived classes can overload methods of
parents, and methods will be dispatched correctly
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We had to emulate generic data structures

- customer passes a (void *) as a payload to a linked list

- customer had to pass In function pointers so that the linked
list could operate on payloads correctly

» comparisons, deallocation, pickling up state, etc.
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C++

Supports templates to facilitate generic data types!
- to declare that x Is a vector of Ints:

» - vector<int> x;
- to declare that x Is a vector of floats:

» vector<float> X;

- to declare that x Is a vector of (vectors of floats):

» vector<vector<float>> x;
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C

We had to be careful about namespace collisions

- C distinguishes between external and internal linkage
»  use “static” to prevent a name from being visible outside a module

» otherwise, a name is global -- visible everywhere

- we used naming conventions to help avoid collisions in the
global namespace

»  LLIteratorNext, HTIlteratorNext, etc.
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C++

Permits a module to define its own namespace!
- the linked list module could define an “LL” hamespace
- the hashtable module could define an “HT" namespace

- both modules could define an lterator class

v

one would be globally named LL::Iterator

» the other would be globally named HT::Iterator
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C

C does not provide any standard data structures

- we had to implement our own linked list and hash table
»  There are libraries, but none have anything close to universal adoption

- as a C programmer, you often re-invent the wheel badly
» maybe Iif you're clever you'll use somebody else’s libraries

» but, C’s lack of abstraction, encapsulation, and generics means
you'll probably have to tweak them, or tweak your code to use

them
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C++

The C++ standard library Is rich!

- generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

» and, Iterators for most of these
- a string class: hides the implementation of strings

- streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

- and more...
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Error handling Is a pain
- have to define error codes and return them

- customers have to understand error code conventions, and
need to constantly test return values

- Ifa() calls b() calls c()

» a depends on b to propagate an error in ¢ back to it
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C++

Supports exceptions!

- try / throw / catch

If used with discipline, can simplify error processing

- but, If used carelessly, can complicate memory
management

- consider: a() calls b() callsc()

» If ¢( ) throws an exception that b( ) doesn’t catch, you might not
get a chance to clean up resources allocated inside b( )
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Some tasks still hurt in C++

Memory management

- C++ has no garbage collector

» you have to manage memory allocation and deallocation, and
track ownership of memory

» It's still possible to have leaks, double frees, and so on
- but, there are some things that help
» “smart pointers”
classes that encapsulate pointers and track reference counts

deallocate memory when the reference count goes to zero
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Some tasks still hurt in C++

C++ doesn’t guarantee type or memory safety

- You can still...

» forcibly cast pointers between incompatible types
» walk off the end of an array and smash the stack
» have dangling pointers

» conjure up a pointer to an address of your choosing
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C++ has many, many features.

Operator overloading

- your class can define methods for handling “+7, “->", etc!
Object constructors, destructors

- particularly handy for stack-allocated objects

Reference types

- truly pass-by-reference instead of pass-by-value

Advanced OO

- multiple inheritance, virtual base classes, dynamic dispatch
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How to think about C++

set of styles
and ways to
use C++

N

good styles
and robust
engineering

practices

set of styles

and ways to
use C
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Our first C++ progam:
helloworld.c

#include <stdio.h>
#include <stdlib.h>

helloworld.c\

int main(int argc, char *argv([]) {
printf (“Hello, World!\n”);
return EXIT SUCCESS;

J
N J

A C program Is a C++ program.

- This means the C++ compiler must allow the ugly things
that C allows, but...

|t can provide "better’ ways to do those things, and...

It can support things beyond what C supports
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C++: helloworld.cc

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

Looks simple enough...

- compile with g++ instead of gcc:

» g++ -Wall -std=gnu++0x -0 helloworld helloworld.cc

- let’'s walk through the program step by step
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Hello, world!

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

Looks simple enough...

- compile with g++ instead of gcc:

» g++ -Wall -std=gnu++0x -0 helloworld helloworld.cc

- let’'s walk through the program step by step
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Hello,

y

\_

world!

#include <iostream> helloworld.cc

#include <cstdlib>

int main(int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\

loStream.

h is part of the C++ standard library

- nhote you don’t need to add the “.h” when you include
standard library headers

»but you do for local headers (e.g., #include “Il.h")

- lostream declares stream object instances, including

std::cin,

std:.cout, std:.cerr, in the “std” nhamespace
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Hello, world!

/ \
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

cstdlib is the C standard library’'s stdlib.h header
- (nearly) all C standard library functions are available to you

» for header foo.h, you should #include <cfoo>

- we need It for EXIT_SUCCESS, as usual
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Hello, world!

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

std::cout Is the “cout” object instance declared by
lostream.h, living within the “std” namespace

- std::cout Is an object of class ostream

» Think System.out from Java

» - http://www.cplusplus.com/reference/iostream/ostream/

- used to format and write output to the console
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http://www.cplusplus.com/reference/iostream/ostream/
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Hello,

world!

/

N

#include <iostream>
#include <cstdlib>

helloworld.cc

int main(int argc, char **argv) {

std::cout << "Hello,
return EXIT SUCCESS;

}

World!" << std::endl;

~

C++ distinguishes between objects and primitive types

- primitive types include all the familiar ones from C

» char, short, unsigned long, float, double, long double, etc.

» and, C++ defines “bool” as a primitive type
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Hello, world!

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

“<<”Is an operator defined by the C++ language

- It's defined by C as well; in C/C++, it left shifts the
bits of integers

- but, C++ allows classes to overload operators

» the ostream class overloads “<<”

l.e., It defines methods that are invoked when an ostream Is
the LHS of the << operator



Hello, world!

/
#include <iostream>

#include <cstdlib>

helloworld.cc

int main(int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

ostream has many different methods to handle <<
- the methods differ in the type of the RHS of <<

- If you do std::cout << “foo”;

»  C++ Invokes cout’s method to handle “<<” with RHS “char *”

sribble



Hello,

world!

/

N

#include <iostream>
#include <cstdlib>

helloworld.cc

int main(int argc, char **argv) {

std::cout << "Hello,
return EXIT SUCCESS;

}

World!" << std::endl;

~

the ostream class’s methods that handle “<<” return (a
reference to) themselves

- s0, when (std::cout << “Hello, World!”) is evaluated:

» a method of the std::cout object is invoked

» it buffers the string “Hello, World!” for the console

»and, It returns (a reference to) std::cout
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Hello,

y

N

world!

#include <iostream>
#include <cstdlib>

helloworld.cc

int main (int argc, char **argv) {

std::cout << "Hello,
return EXIT SUCCESS;

}

World!" << std::endl;

\

next, a method on std::cout to handle “<<” Is invoked

- this time, the RHS is std::endl
- turns out this Is a pointer to a “manipulator” function

»this manipulator function writes newline to the ostream it
IS Invoked on, and then flushes the ostream’s buffer

» S0, something Is printed on the console at this point

sribble



Wow...

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

You should be surprised and scared at this point

- C++ makes It easy to hide a significant amount of
complexity

» It's powerful, but really dangerous

» once you mix together templates, operator overloading, method
overloading, generics, and multiple inheritance, and it gets really
hard to know what’s actually happening!
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Refining It a bit...

, , I
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

C++’s standard library has a std::string class!

- Include the string.h header to use it

- http://lwww.cplusplus.com/reference/string/
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http://www.cplusplus.com/reference/string/

Refining It a bit...

, , I
#include <iostream> helloworld2.cc

#include <cstdlib>
#include <string>

using namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

The “using” keyword introduces part of a namespace, or
an entire namespace, into the current region

- using namespace std; -- imports all names from std.::

- using std::cout; -- Imports only std::cout
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Refining It a bit...

, , N\
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

We're instantiating a std::string object on the stack

- passing the C string "Hello, World!” to its constructor method

» hello is deallocated (and its destructor invoked) when main
returns
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Refining It a bit...

, , I
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

The C++ string library overloads the << operator as well

- defines a function (not an object method) that is invoked
when the LHS Is an ostream and the RHS Is a std::string

» http://www.cplusplus.com/reference/string/operator<</

These are slightly modified versions of slides prepared by Steve Gribble


http://www.cplusplus.com/reference/string/operator%3C%3C/

Refining It a bit...

, , N\
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

Note the side-effect of using namespace std;

- can now refer to std::string by string, std::cout by cout, and
std::endl by endl|
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string concatenation

/

#include <iostream>
#include <cstdlib>

usling namespace std;

int main(int argc, char **argv)
string hello ("Hello");
hello = hello + " there";
cout << hello << endl;
return EXIT SUCCESS;

{

\
concat.cc

The string class overloads the “+” operator

- creates and returns a new string that is the concatenation of
LHS and RHS
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string assignment

e )
#include <iostream> concat.cc

#include <cstdlib>

usling namespace std;

int main(int argc, char **argv) {
string hello ("Hello");
hello = hello + " there";
cout << hello << endl;
return EXIT SUCCESS;

}
\ J

The string class overloads the “=" operator

- coples the RHS and replaces the string’s contents with it

» S0, the full statement (a) “+" creates a string that is the
concatenation of hello’s current contents and “ there”, and
(b) “=" creates a copy of the concatenation to store in hello
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stream manipulators

2 , I
#include <iostream> helloworld3l.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

cout << "Hi! " << setw(4) << 5 <<« " " <K< 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;

return EXIT SUCCESS;

\} J

lomanip.h defines a set of stream manipulator functions

- pass them to a stream to affect formatting

» http://www.cplusplus.com/reference/iostream/manipulators/
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http://www.cplusplus.com/reference/iostream/manipulators/

stream manipulators

2 , I
#include <iostream> helloworld3l.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

cout << "Hi! " << setw(4) << 5 <« " " <K 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;

return EXIT SUCCESS;

setw(x) sets the width of the next field to x

- only affects the next thing sent to the output stream
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stream manipulators

2 , I
#include <iostream> helloworld3l.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

cout << "Hi! " << setw(4) << 5 <« " " <K< 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;

return EXIT SUCCESS;

\} J

hex sets the stream to output integers in hexadecimal

- stays In effect until you set the stream to some other base

- hex, dec, oct are your choices
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You can still use printf, though

-
helloworld4d.cc

#include <cstdio>
#include <cstdlib>

int main(int argc, char **argv) {
printf ("hello from C\n");
return EXIT SUCCESS;

}

- /

C Is (roughly) a subset of C++

These are slightly modified versions of slides prepared by Steve Gribble



2 .
#include <iostream> helloworld5.cc
#include <cstdlib>

usling namespace std;

int main(int argc, char **argv) {
int num;

cout << "Type a number: ";
cin >> num;
cout << "You typed: " << num << endl;

return EXIT SUCCESS;

\} J

std::cin Is an object instance of class istream
- supports the >> operator for “extraction”

- cin also has a getline( ) method
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Exercise 1

Write a C++ program that:

- uses streams to:
»  prompts the user to type in 5 floats
» - prints them out in opposite order

» with 4 digits of precision
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