CSE 333

Lecture 9 - intro to C++




Today's goals

An introduction to C++
- some shortcomings of C that C++ addresses
- glve you one perspective on how to learn C++

- kick the tires and write some code

These are slightly modified versions of slides prepared by Steve Gribble



C

We had to work hard to mimic encapsulation, abstraction

- encapsulation: hiding implementation details

» used header file conventions and the “static” specifier to separate private
functions from public functions

» cast structures to (void *) to hide implementation-specific details
- abstraction: associating behavior with encapsulated state

»  the functions that operate on a LinkedList were not really tied to the linked list
structure

we passed a linked list to a function, rather than invoking a method on a
linked list instance

we rely on the user of the code to make correct associations; the
language provides little

These are slightly modified versions of slides prepared by Steve Gribble



C++

A major addition Is Its support for object-orientedness

- classes

» public, private, and protected methods and instance variables

»  (multiple!) inheritance
- polymorphism

»  static polymorphism: multiple functions or methods with the same
name, but different argument types

» dynamic polymorphism: derived classes can overload methods of
parents, and methods will be dispatched correctly

These are slightly modified versions of slides prepared by Steve Gribble



We had to emulate generic data structures

- customer passes a (void *) as a payload to a linked list

- customer had to pass In function pointers so that the linked
list could operate on payloads correctly

» comparisons, deallocation, pickling up state, etc.

These are slightly modified versions of slides prepared by Steve Gribble



C++

Supports templates to facilitate generic data types!
- to declare that x Is a vector of Ints:

» - vector<int> x;
- to declare that x Is a vector of floats:

» vector<float> X;

- to declare that x Is a vector of (vectors of floats):

» vector<vector<float>> x;

These are slightly modified versions of slides prepared by Steve Gribble



C

We had to be careful about namespace collisions

- C distinguishes between external and internal linkage
»  use “static” to prevent a name from being visible outside a module

» otherwise, a name is global -- visible everywhere

- we used naming conventions to help avoid collisions in the
global namespace

»  LLIteratorNext, HTIlteratorNext, etc.

These are slightly modified versions of slides prepared by Steve Gribble



C++

Permits a module to define its own namespace!
- the linked list module could define an “LL” hamespace
- the hashtable module could define an “HT" namespace

- both modules could define an lterator class

v

one would be globally named LL::Iterator

» the other would be globally named HT::Iterator

These are slightly modified versions of slides prepared by Steve Gribble



C

C does not provide any standard data structures

- we had to implement our own linked list and hash table
»  There are libraries, but none have anything close to universal adoption

- as a C programmer, you often re-invent the wheel badly
» maybe Iif you're clever you'll use somebody else’s libraries

» but, C’s lack of abstraction, encapsulation, and generics means
you'll probably have to tweak them, or tweak your code to use

them

These are slightly modified versions of slides prepared by Steve Gribble



C++

The C++ standard library Is rich!

- generic containers: bitset, queue, list, associative array
(including hash table), deque, set, stack, and vector

» and, Iterators for most of these
- a string class: hides the implementation of strings

- streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

- and more...

These are slightly modified versions of slides prepared by Steve Gribble



Error handling Is a pain
- have to define error codes and return them

- customers have to understand error code conventions, and
need to constantly test return values

- Ifa() calls b() calls c()

» a depends on b to propagate an error in ¢ back to it

These are slightly modified versions of slides prepared by Steve Gribble



C++

Supports exceptions!

- try / throw / catch

If used with discipline, can simplify error processing

- but, If used carelessly, can complicate memory
management

- consider: a() calls b() callsc()

» If ¢( ) throws an exception that b( ) doesn’t catch, you might not
get a chance to clean up resources allocated inside b( )

These are slightly modified versions of slides prepared by Steve Gribble



Some tasks still hurt in C++

Memory management

- C++ has no garbage collector

» you have to manage memory allocation and deallocation, and
track ownership of memory

» It's still possible to have leaks, double frees, and so on
- but, there are some things that help
» “smart pointers”
classes that encapsulate pointers and track reference counts

deallocate memory when the reference count goes to zero

These are slightly modified versions of slides prepared by Steve Gribble



Some tasks still hurt in C++

C++ doesn’t guarantee type or memory safety

- You can still...

» forcibly cast pointers between incompatible types
» walk off the end of an array and smash the stack
» have dangling pointers

» conjure up a pointer to an address of your choosing

These are slightly modified versions of slides prepared by Steve Gribble



C++ has many, many features.

Operator overloading

- your class can define methods for handling “+7, “->", etc!
Object constructors, destructors

- particularly handy for stack-allocated objects

Reference types

- truly pass-by-reference instead of pass-by-value

Advanced OO

- multiple inheritance, virtual base classes, dynamic dispatch

These are slightly modified versions of slides prepared by Steve Gribble



How to think about C++

set of styles
and ways to
use C++

N

good styles
and robust
engineering

practices

set of styles

and ways to
use C

These are slightly modified versions of slides prepared by Steve Gribble



Our first C++ progam:
helloworld.c

#include <stdio.h>
#include <stdlib.h>

helloworld.c\

int main(int argc, char *argv([]) {
printf (“Hello, World!\n”);
return EXIT SUCCESS;

J
N J

A C program Is a C++ program.

- This means the C++ compiler must allow the ugly things
that C allows, but...

|t can provide "better’ ways to do those things, and...

It can support things beyond what C supports

These are slightly modified versions of slides prepared by Steve Gribble



C++: helloworld.cc

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

Looks simple enough...

- compile with g++ instead of gcc:

» g++ -Wall -std=gnu++0x -0 helloworld helloworld.cc

- let’'s walk through the program step by step

These are slightly modified versions of slides prepared by Steve Gribble



Hello, world!

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

Looks simple enough...

- compile with g++ instead of gcc:

» g++ -Wall -std=gnu++0x -0 helloworld helloworld.cc

- let’'s walk through the program step by step

These are slightly modified versions of slides prepared by Steve Gribble



Hello,

y

\_

world!

#include <iostream> helloworld.cc

#include <cstdlib>

int main(int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

\

loStream.

h is part of the C++ standard library

- nhote you don’t need to add the “.h” when you include
standard library headers

»but you do for local headers (e.g., #include “Il.h")

- lostream declares stream object instances, including

std::cin,

std:.cout, std:.cerr, in the “std” nhamespace

e dl = =gy rrpedn

e i

=TT

Wy

oweve sribble



Hello, world!

/ \
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

cstdlib is the C standard library’'s stdlib.h header
- (nearly) all C standard library functions are available to you

» for header foo.h, you should #include <cfoo>

- we need It for EXIT_SUCCESS, as usual

HIESE dls gy IDUsU VETSIUNE UL siues piepaicu uy sweve siibble



Hello, world!

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

std::cout Is the “cout” object instance declared by
lostream.h, living within the “std” namespace

- std::cout Is an object of class ostream

» Think System.out from Java

» - http://www.cplusplus.com/reference/iostream/ostream/

- used to format and write output to the console

These are slightly modified versions of slides prepared by Steve Gribble


http://www.cplusplus.com/reference/iostream/ostream/
http://www.cplusplus.com/reference/iostream/ostream/

Hello,

world!

/

N

#include <iostream>
#include <cstdlib>

helloworld.cc

int main(int argc, char **argv) {

std::cout << "Hello,
return EXIT SUCCESS;

}

World!" << std::endl;

~

C++ distinguishes between objects and primitive types

- primitive types include all the familiar ones from C

» char, short, unsigned long, float, double, long double, etc.

» and, C++ defines “bool” as a primitive type

1 aliuies i

=TT

Wy

oweve sribble



Hello, world!

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

“<<”Is an operator defined by the C++ language

- It's defined by C as well; in C/C++, it left shifts the
bits of integers

- but, C++ allows classes to overload operators

» the ostream class overloads “<<”

l.e., It defines methods that are invoked when an ostream Is
the LHS of the << operator



Hello, world!

/
#include <iostream>

#include <cstdlib>

helloworld.cc

int main(int argc, char **argv) {
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

ostream has many different methods to handle <<
- the methods differ in the type of the RHS of <<

- If you do std::cout << “foo”;

»  C++ Invokes cout’s method to handle “<<” with RHS “char *”

sribble



Hello,

world!

/

N

#include <iostream>
#include <cstdlib>

helloworld.cc

int main(int argc, char **argv) {

std::cout << "Hello,
return EXIT SUCCESS;

}

World!" << std::endl;

~

the ostream class’s methods that handle “<<” return (a
reference to) themselves

- s0, when (std::cout << “Hello, World!”) is evaluated:

» a method of the std::cout object is invoked

» it buffers the string “Hello, World!” for the console

»and, It returns (a reference to) std::cout

_ . _ble



Hello,

y

N

world!

#include <iostream>
#include <cstdlib>

helloworld.cc

int main (int argc, char **argv) {

std::cout << "Hello,
return EXIT SUCCESS;

}

World!" << std::endl;

\

next, a method on std::cout to handle “<<” Is invoked

- this time, the RHS is std::endl
- turns out this Is a pointer to a “manipulator” function

»this manipulator function writes newline to the ostream it
IS Invoked on, and then flushes the ostream’s buffer

» S0, something Is printed on the console at this point

sribble



Wow...

4 I
#include <iostream> helloworld.cc

#include <cstdlib>

int main (int argc, char **argv) {
std::cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
\ J

You should be surprised and scared at this point

- C++ makes It easy to hide a significant amount of
complexity

» It's powerful, but really dangerous

» once you mix together templates, operator overloading, method
overloading, generics, and multiple inheritance, and it gets really
hard to know what’s actually happening!

These are slightly modified versions of slides prepared by Steve Gribble



Refining It a bit...

, , I
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

C++’s standard library has a std::string class!

- Include the string.h header to use it

- http://lwww.cplusplus.com/reference/string/

These are slightly modified versions of slides prepared by Steve Gribble


http://www.cplusplus.com/reference/string/

Refining It a bit...

, , I
#include <iostream> helloworld2.cc

#include <cstdlib>
#include <string>

using namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

The “using” keyword introduces part of a namespace, or
an entire namespace, into the current region

- using namespace std; -- imports all names from std.::

- using std::cout; -- Imports only std::cout

These are slightly modified versions of slides prepared by Steve Gribble



Refining It a bit...

, , N\
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

We're instantiating a std::string object on the stack

- passing the C string "Hello, World!” to its constructor method

» hello is deallocated (and its destructor invoked) when main
returns

These are slightly modified versions of slides prepared by Steve Gribble



Refining It a bit...

, , I
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

The C++ string library overloads the << operator as well

- defines a function (not an object method) that is invoked
when the LHS Is an ostream and the RHS Is a std::string

» http://www.cplusplus.com/reference/string/operator<</

These are slightly modified versions of slides prepared by Steve Gribble


http://www.cplusplus.com/reference/string/operator%3C%3C/

Refining It a bit...

, , N\
#include <iostream> helloworld?.cc

#include <cstdlib>
#include <string>

usling namespace std;

int main (int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

\} J

Note the side-effect of using namespace std;

- can now refer to std::string by string, std::cout by cout, and
std::endl by endl|

These are slightly modified versions of slides prepared by Steve Gribble



string concatenation

/

#include <iostream>
#include <cstdlib>

usling namespace std;

int main(int argc, char **argv)
string hello ("Hello");
hello = hello + " there";
cout << hello << endl;
return EXIT SUCCESS;

{

\
concat.cc

The string class overloads the “+” operator

- creates and returns a new string that is the concatenation of
LHS and RHS

These are slightly modified versions of slides prepared by Steve Gribble



string assignment

e )
#include <iostream> concat.cc

#include <cstdlib>

usling namespace std;

int main(int argc, char **argv) {
string hello ("Hello");
hello = hello + " there";
cout << hello << endl;
return EXIT SUCCESS;

}
\ J

The string class overloads the “=" operator

- coples the RHS and replaces the string’s contents with it

» S0, the full statement (a) “+" creates a string that is the
concatenation of hello’s current contents and “ there”, and
(b) “=" creates a copy of the concatenation to store in hello

e TE Sy Ui vensIuibs U siucs prspaicu Doy oloeve urlbbl&



stream manipulators

2 , I
#include <iostream> helloworld3l.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

cout << "Hi! " << setw(4) << 5 <<« " " <K< 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;

return EXIT SUCCESS;

\} J

lomanip.h defines a set of stream manipulator functions

- pass them to a stream to affect formatting

» http://www.cplusplus.com/reference/iostream/manipulators/

These are slightly modified versions of slides prepared by Steve Gribble


http://www.cplusplus.com/reference/iostream/manipulators/

stream manipulators

2 , I
#include <iostream> helloworld3l.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

cout << "Hi! " << setw(4) << 5 <« " " <K 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;

return EXIT SUCCESS;

setw(x) sets the width of the next field to x

- only affects the next thing sent to the output stream

These are slightly modified versions of slides prepared by Steve Gribble



stream manipulators

2 , I
#include <iostream> helloworld3l.cc

#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char **argv) {

cout << "Hi! " << setw(4) << 5 <« " " <K< 5 << endl;
cout << hex << 16 << " " << 13 << endl;
cout << dec << 16 << " " << 13 << endl;

return EXIT SUCCESS;

\} J

hex sets the stream to output integers in hexadecimal

- stays In effect until you set the stream to some other base

- hex, dec, oct are your choices

These are slightly modified versions of slides prepared by Steve Gribble



You can still use printf, though

-
helloworld4d.cc

#include <cstdio>
#include <cstdlib>

int main(int argc, char **argv) {
printf ("hello from C\n");
return EXIT SUCCESS;

}

- /

C Is (roughly) a subset of C++

These are slightly modified versions of slides prepared by Steve Gribble



2 .
#include <iostream> helloworld5.cc
#include <cstdlib>

usling namespace std;

int main(int argc, char **argv) {
int num;

cout << "Type a number: ";
cin >> num;
cout << "You typed: " << num << endl;

return EXIT SUCCESS;

\} J

std::cin Is an object instance of class istream
- supports the >> operator for “extraction”

- cin also has a getline( ) method

These are slightly modified versions of slides prepared by Steve Gribble



Exercise 1

Write a C++ program that:

- uses streams to:
»  prompts the user to type in 5 floats
» - prints them out in opposite order

» with 4 digits of precision

These are slightly modified versions of slides prepared by Steve Gribble



