
10/2/2013

1

CSE 333
Lecture 4 - malloc, free, struct,

typedef

These are slightly modified versions of slides prepared by Steve Gribble

Double pointers
what’s the difference between a (char *) and a (char **)?

int main(int argc, char **argv) {

 char hi[6] = {'h', 'e', 'l',

 'l', 'o', '\0'};

 char *p, **dp;

 p = &(hi[0]);

 dp = &p;

 printf("%c %c\n", *p, **dp);

 printf("%p %p %p\n", p, *dp, hi);

 p += 1;

 printf("%c %c\n", *p, **dp);

 printf("%p %p %p\n", p, *dp, hi);

 *dp += 2;

 printf("%c %c\n", *p, **dp);

 printf("%p %p %p\n", p, *dp, hi);

 return 0;

}

Exercise 0: draw / update the

box-and-arrow diagram for this

program as it executes

hi[0] ‘h’

hi[1] ‘e’

hi[2] ‘l’

hi[3] ‘l’

hi[4] ‘o’

hi[5] ‘\0’

p 0xbfd497ca

dp 0xbfd497c4

exercise0.c

hi == &(hi[0])

0xbfd497ca

0xbfd497c4

0xbfd497c0

These are slightly modified versions of slides prepared by Steve Gribble

Double pointers and main()

0

$./a.out 1.0 two three

argc 4

argv

1 . 0 \0

t w o \0

t h r e e \0

int main(int argc, char **argv) { …}

or
int main(int argc, char *argv[]) { …}

These are slightly modified versions of slides prepared by Steve Gribble

Today’s goals:

- review heap-allocated memory

‣ malloc(), free()

‣ memory leaks

- understand how to use them in programs

- quick intro to structs and typedef

10/2/2013

2

These are slightly modified versions of slides prepared by Steve Gribble

Memory allocation

So far, we have seen two kinds of memory allocation:

// a global variable

int counter = 0;

int main(int argc, char **argv) {

 counter++;

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main(int argc, char **argv) {

 int y = foo(10); // local var

 return 0;

}

counter is statically allocated

- allocated when program is loaded

- deallocated when program exits

a,x,y are automatically allocated

- allocated on entry to block

- deallocated on exit

These are slightly modified versions of slides prepared by Steve Gribble

We need more flexibility
Sometimes we want to allocate memory that:

- persists across multiple function calls but for less than the

lifetime of the program

- is too big to fit on the stack

- is allocated and returned by a function and its size is not

known in advance to the caller

// (this is pseudo-C-code)

char *ReadFile(char *filename) {

 int size = FileSize(filename);

 char *buffer = AllocateMemory(size);

 ReadFileIntoBuffer(filename, buffer);

 return buffer;

}

These are slightly modified versions of slides prepared by Steve Gribble

But, you already knew that…
In Java:

 PersonRecord p = new PersonRecord();

 The Object is created when you execute that statement.

What did new do?

• Allocate memory to hold instance variables

• Invoke the PersonRecord constructor to initialize it

How long does the object live?

• Until your program can no longer reference it.

(Automatic garbage collection.)

C C++

These are slightly modified versions of slides prepared by Steve Gribble

Dynamic memory allocation

Your program explicitly requests a new block of

memory:

‣ the language runtime allocates it, perhaps with help from OS

Dynamically allocated memory persists until:

‣ your code explicitly deallocates it [manual memory management]

‣ a garbage collector collects it [automatic memory

management]

C requires you to manually manage memory

‣ Why?

10/2/2013

3

These are slightly modified versions of slides prepared by Steve Gribble

C and malloc
variable = (type *) malloc(size in bytes);

malloc allocates a block of memory of the given size

- returns a pointer to the first byte of that memory

‣ malloc returns NULL if the memory could not be allocated

- you should assume the memory initially contains garbage

- you’ll typically use sizeof to calculate the size you need

// allocate a 10-float array

float *arr = (float *) malloc(10*sizeof(float));

if (arr == NULL)

 return errcode;

arr[0] = 5.1; // etc.

These are slightly modified versions of slides prepared by Steve Gribble

C and calloc
variable = (type *) calloc(#items, sizeof(1 item));

Mostly like malloc, but also zeroes out the block of

memory

- helpful for shaking out bugs

- slightly slower; preferred for non-performance-critical code

- malloc and calloc are found in stdlib.h

// allocate a 10 long-int array

long *arr = (long *) calloc(10, sizeof(long));

if (arr == NULL)

 return errcode;

arr[0] = 5L; // etc.

These are slightly modified versions of slides prepared by Steve Gribble

Deallocation
 free(pointer);

Releases the memory pointed-to by the pointer

- pointer must point to the first byte of heap-allocated memory

‣ i.e., something previously returned by malloc() or calloc()

- after free()‘ing a block of memory, that block of memory

might be returned in some future malloc() / calloc()

- it’s good form to set a pointer to NULL after freeing it

long *arr = (long *) calloc(sizeof(long),10);

if (arr == NULL)

 return errcode;

// .. do something ..

free(arr);

arr = NULL; // a useful convention
These are slightly modified versions of slides prepared by Steve Gribble

Heap

The heap (aka “free

store”)

- is a large pool of unused

memory that is used for

dynamically allocated data

- malloc allocates chunks of

data in the heap, free

deallocates data

- malloc maintains book-

keeping data in the heap

to track allocated blocks
0x00000000

0xFFFFFFFF
OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment

.data, .bss

read-only segment

.text, .rodata

10/2/2013

4

These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c

These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

copy
 i a2

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

copy
 i a2

malloc

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c

10/2/2013

5

These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

copy
 i a2

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

copy
 i a2

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c

These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

copy
 i a2

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

copy
 i a2

2 4 6 8

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c

10/2/2013

6

These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

copy
 i a2

2 4 6 8

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

2 4 6 8

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c

These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

2 4 6 8

free

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

free

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c

10/2/2013

7

These are slightly modified versions of slides prepared by Steve Gribble

Heap + stack OS kernel [protected]

stack

heap (malloc/free)

read/write segment

globals

read-only segment

(main, f, g)

main
argc, argv

 nums

 ncopy

2 4 6 8

#include <stdlib.h>

int *copy(int a[], int size) {

 int i, *a2;

 a2 = malloc(

 size * sizeof(int));

 if (a2 == NULL)

 return NULL;

 for (i = 0; i < size; i++)

 a2[i] = a[i];

 return a2;

}

int main(...) {

 int nums[4] = {2,4,6,8};

 int *ncopy = copy(nums, 4);

 // ... do stuff ...

 free(ncopy);

 return 0;

}

arraycopy.c These are slightly modified versions of slides prepared by Steve Gribble

NULL

NULL: a guaranteed-to-be-invalid memory location

• an attempt to deference NULL causes a segmentation fault

In C on Linux:

‣ NULL is 0x00000000

That’s why you should NULL a pointer after you have free()’d it

‣ it’s better to have a segfault than to corrupt memory!

#include <stdio.h>

int main(int argc, char **argv) {

 int *p = NULL;

 *p = 1; // causes a segmentation fault

 return 0;

} segfault.c

These are slightly modified versions of slides prepared by Steve Gribble

Memory corruption

There are all sorts of ways to corrupt memory in C

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv) {

 int a[2];

 int *b = malloc(2*sizeof(int)), *c;

 a[2] = 5; // assign past the end of an array

 a[0] += 2; // assume malloc zeroes out memory

 c = b+3; // mess up your pointer arithmetic

 free(&(a[0])); // free() something not malloc()'ed

 free(b);

 free(b); // double-free the same block

 b[0] = 5; // use a free()'d pointer

 // any many more!

 return 0;

}

memcorrupt.c
These are slightly modified versions of slides prepared by Steve Gribble

Memory leak

A memory leak happens when code fails to deallocate

dynamically allocated memory that it can no longer reach

// assume we have access to functions FileLen,

// ReadFileIntoBuffer, and NumWordsInString.

int NumWordsInFile(char *filename) {

 char *filebuf = (char *) malloc(FileLen(filename)+1);

 if (filebuf == NULL)

 return -1;

 ReadFileIntoBuffer(filename, filebuf);

 // leak! we never free(filebuf)

 return NumWordsInString(filebuf);

}

10/2/2013

8

These are slightly modified versions of slides prepared by Steve Gribble

Implications of a leak?

Your program’s virtual memory footprint will keep growing

- for short-lived programs, this might be OK

- for long-lived programs, this usually has bad repercussions

‣ might slow down over time (VM thrashing – see cse451)

• potential “DoS attack” if a server leaks memory

‣ might exhaust all available memory and crash

‣ other programs might get starved of memory

- in some cases, you might prefer to leak memory than to corrupt

memory with a buggy free()

These are slightly modified versions of slides prepared by Steve Gribble

Structured data
struct typename {

 type name;

 type name;

 ...

 type name;

};

struct: a C type that contains a set of fields

- similar to a Java class, but without methods / constructors

- instances can be allocated on the stack or heap

- useful for defining new structured types of data

// The following defines a new structured

// data type with name “struct Point”
struct Point {

 float x, y;

};

struct Point origin = {0.0, 0.0};

These are slightly modified versions of slides prepared by Steve Gribble

Using structs

Use “.” to refer to fields in a struct

Use “->” to refer to fields through a pointer to a struct

struct Point { // how much space do these lines allocate?

 float x, y;

};

int main(int argc, char **argv) {

 int i = 1;

 struct Point p1 = {0.0, 0.0}; // p1 is stack allocated

 struct Point *pt_ptr = &p1;

 p1.x = 1.0;

 pt_ptr->y = 2.0;

 return 0;

}

simplestruct.c

These are slightly modified versions of slides prepared by Steve Gribble

Copy by assignment
You can assign the value of a struct from a struct of the same

type; this copies the entire contents

#include <stdio.h>

struct Point {

 float x, y;

};

int main(int argc, char **argv) {

 struct Point p1 = {0.0, 2.0};

 struct Point p2 = {4.0, 6.0};

 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);

 p2 = p1;

 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);

 return 0;

}

structassign.c
struct Point *p2 = &p1; p2->x = 4.0; p2->y = 6.0;

10/2/2013

9

These are slightly modified versions of slides prepared by Steve Gribble

typedef

typedef type name;

Allows you to define a new type whose name is name

- especially useful when dealing with structs

// make "superlong" be a synonym for "unsigned long long"

typedef unsigned long long superlong;

// make "Point" be a synonym for "struct point_st { ... }"

typedef struct point_st {

 superlong x;

 superlong y;

} Point;

Point origin = {0, 0};

These are slightly modified versions of slides prepared by Steve Gribble

structs as arguments

structs are passed by value

- like everything else in C

‣ entire structure is copied

- to pass-by-reference, pass a

pointer to the struct

// Point is a (struct point_st)

// PointPtr is a (struct point_st *)

typedef struct point_st {

 int x, y;

} Point, *PointPtr, **PointPtrPtr;

void DoubleXBroken(Point p) {

 p.x *= 2;

}

void DoubleXWorks(PointPtr p) {

 p->x *= 2;

}

int main(int argc, char *argv) {

 Point a = {1,1};

 DoubleXBroken(a);

 printf("(%d,%d)\n", a.x, a.y);

 DoubleXWorks(&a);

 printf("(%d,%d)\n", a.x, a.y);

 return 0;

}

structarg.c

These are slightly modified versions of slides prepared by Steve Gribble

You can return structs
// a complex number is a + bi

typedef struct complex_st {

 double real; // real component (i.e., a)

 double imag; // imaginary component (i.e., b)

} Complex, *ComplexPtr;

Complex AddComplex(Complex x, Complex y) {

 Complex retval;

 retval.real = x.real + y.real;

 retval.imag = x.imag + y.imag;

 return retval; // returns a copy of retval

}

Complex MultiplyComplex(Complex x, Complex y) {

 Complex retval;

 retval.real = (x.real * y.real) - (x.imag * y.imag);

 retval.imag = (x.imag * y.real) - (x.real * y.imag);

 return retval;

}

complexstruct.c These are slightly modified versions of slides prepared by Steve Gribble

Dynamically allocated structs

You can malloc and free structs, as with other types

- sizeof is particularly helpful here

typedef struct complex_st {

 double real; // real component

 double imag; // imaginary component

} Complex, *ComplexPtr;

ComplexPtr AllocComplex(double real, double imag) {

 Complex *retval = (Complex *) malloc(sizeof(Complex));

 if (retval != NULL) {

 retval->real = real;

 retval->imag = imag;

 }

 return retval;

}

complexstruct.c

10/2/2013

10

These are slightly modified versions of slides prepared by Steve Gribble

Exercise 1

Write and test a program that defines:

- a new structured type Point

‣ represent it with floats for the x, y coordinate

- a new structured type Rectangle

‣ assume its sides are parallel to the x-axis and y-axis

‣ represent it with the bottom-left and top-right Points

- a function that computes/returns the area of a Rectangle

- a function that tests whether a Point is in a Rectangle

These are slightly modified versions of slides prepared by Steve Gribble

Exercise 2

Implement AllocSet(), FreeSet()

- AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet, and once to allocate the “points” field inside it

- FreeSet() needs to use free twice

typedef struct complex_st {

 double real; // real component

 double imag; // imaginary component

} Complex;

typedef struct complex_set_st {

 int num_points_in_set;

 Complex *points; // an array of Complex

} ComplexSet;

ComplexSet *AllocSet(Complex c_arr[], int size);

void FreeSet(ComplexSet *set);

These are slightly modified versions of slides prepared by Steve Gribble

See you on Friday!

