CSE 333

Lecture 2 - arrays, memory, pointers

+S

Administrivia

ex0, hwO were due 15 minutes ago!

- let me know If you had any logistical issues with either

ex1 Is out today, due on Monday

hwl is out today, due in two weeks

These are slightly modified versions of slides prepared by Steve Gribble

Today's agenda

More C detalls

- functions

- arrays

- refresher on C's memory model
= address spaces

= the stack

brief refresher on pointers

These are slightly modified versions of slides prepared by Steve Gribble

Defining a function

returnType name(type name, ..., type name) {

statements;

sum_ fragment.c

-
// sum integers from 1 to max
int sumTo (int max) {
int 1, sum = 0;
for (i=1,; i<=max,; 1i++) {
sum += 1i;
}

return sum;

}

_

These are slightly modified versions of slides prepared by Steve Gribble

Problem: ordering

You shouldn’t call a function that hasn’t been declared yet
Why?

4 I
#include <stdio.h>

int main(int argc, char **argv) {
printf ("sumTo (5) is: %d\n", sumTo (5));
return 0O;

J
sum badorder.c

// sum integers from 1 to max
int sumTo (1nt max) {
int 1, sum = 0;

for (i=1; i<=max; 1i++) {
sum += 1;
}

return sum;

These are slightly modified versions of slides prepared by Steve Gribble

Problem: ordering

Solution 1: find an ordering that respects the restriction

2 . I
#include <stdio.h>

// sum integers from 1 to max
int sumTo (int max) {
int i, sum = 0;

sum betterorder.c for (i=1; i<=max; i++) {

sum += 1;
}

return sum;

}

int main(int argc, char **argv) {
printf ("sumTo (5) is: %d\n", sumTo (5));
return O;

\} J

Of Course, thIS Isn ’t always pOSSIbIe = «These are slightly modified versions of slides prepared by Steve Gribble

Problem: ordering

4 I
Solution 2: #include <stdio.h>
- Separate notions of // this prototype is a declaration of sumTo
declaration and int sumTo (int) ;
deflnlthn int main(int argc, char **argv) {
// This 1s the use of sumTo
- Place declaration printf ("sumTo (5) is: %d\n", sumTo (5));
before use e
- (PlaCe definition // This is the definition of sumTo
most anywhere...) ot sumbo (int max) i
int 1, sum = 0;
for (i1i=1; i<=max; 1++) {
sum += 1i;
}
return sum;
}
- J

sum_declared.c

These are slightly modified versions of slides prepared by Steve Gribble

Arrays

type name/[size];

Example:

An array does not know Its own size

{}nt scores[100]; J

» allocates 100 ints’ worth of memory

Initially, each array element contains garbage data

» associates the name scores with that memory

sizeof(scores) is not reliable; only works in some situations

recent versions of C allow the declared array size to be an expression

\J

/int[] vecAdd (int[] A, int[] B, int n) {)
int result[n];

// OK in C99

These are slightly modified versions of slides prepared by Steve Gribble

Array Initialization

type name[size] = {value, value, ..., value},

- allocates and array and fills it with supplied values

- If fewer values are given than the array size, fills rest with O

name[index] = expression;

- sets the value of an array element

-

N
int primes([6] = {2, 3, 5, 6, 11, 13};
primes[3] = 7;
primes[100] = 0; // smash!

J

-

-

int allZeroes[1000] = {0};

_

// 1000 zeroes

J

These are slightly modified versions of slides prepared by Steve Gribble

Multi-dimensional arrays

type name[rows][columns] = {{values}, ..., {values}};

- allocates a 2D array and fills it with predefined values

4)
// a 2 row, 3 column array of doubles
double gridi[2][3];
// a 3 row, 5 column array of ints
int matrix[3][5] = {
(0, 1, 2, 3, 4},
{0, 2, 4, o, 8},
{1, 3, 5, 7, 9}
b
- J

matrix.c

These are slightly modified versions of slides prepared by Steve Gribble

Arrays as parameters

It's tricky to use arrays as parameters

- Array names are passed by value

» which means that array contents are always passed by reference

array (you have to write code If you want that)

- The language doesn’t provide any way to determine the length of an

/int sumAll (int all); // prototype declaration A

int main(int argc, char **argv) {
int numbers[5] = {3, 4, 1, 7, 4};
int sum = sumAll (numbers) ;
return O;

}

int sumAll (int a[]) {
int 1, sum = 0O;
// there isn’t anything you can write that means “a’s length”
for (1 = 0; 1 < ...272°

U y,

These are slightly modified versions of slides prepared by Steve Gribble

Arrays as parameters

Solution 1: declare the array size in the function

but, what does it do?

problem: this isn’t really a solution at all!

-

sum += al[i];

}

return sum;

int sumAll (int al[b5]);

int main(int argc, char **argv)

sum) ;

int numbers[5] = {3, 4, 1,
int sum = sumAll (numbers) ;
printf ("sum is: %d\n",
return O;

}

int sumAll (int a[5]) {
int 1, sum = 0O;
for (1 = 0; 1 < 5; i++) {

{
4} ;

J

These are slightly modified versions of slides prepared by Steve Gribble

Arrays as parameters

Solution 2: pass the size as a parameter

-
int sumAll (int al[], int size);

int main(int argc, char **argv)
int numbers|[b] = {3, 4, 1, 7,

printf ("sum is: %d\n", sum);
return 0O;

int sumAll (int al[], 1int size) {
int 1, sum = 0;

for (1 = 0

; 1 <= size; 1++) |
sum += af[i];

14

}

return sum;

int sum = sumAll (numbers, 5);

Pop quiz 1:
Can you spot the bug in this code?

Pop quiz 2:
What do you think happens when you run it?

arraysum.c

Religious battle 1:
Which is better, C arrays or Java arrays?

These are slightly modified versions of slides prepared by Steve Gribble

Returning an array

Local variables, including arrays, are stack allocated

- The memory they occupy Is release when a function returns
(and may be reused for some other purpose)

- Therefore, local arrays can’ t be safely returned from functions

- p
int *copyarray(int src[], int size) {
int i, dst[size]; // OK in C99
for (i = 0; i < size; i++) { But | thought C always
dst[i] = src[i]; passes & returns by value?
}
return dst; // no! -- buggy
}
- J

buggy copyarray.c

These are slightly modified versions of slides prepared by Steve Gribble

Stopgap Solution: an output

parameter

Create the “returned” array in the caller
- pass it as an output parameter to copyarray

- we'll see a better way later in the course

p
int 1i;

for (

i =0; 1 < size; i++) {
dst[i] =

srcl[i];
}
}

N

vold copyarray(int src[], int dst[], int size)

{

~

copyarray.c

These are slightly modified versions of slides prepared by Steve Gribble

OS and processes

The OS lets you run multiple applications at once
- an application runs within an OS “process”

- the OS timeslices each CPU between runnable processes

» happens very fast; ~100 times per second!

process 1 process 2 e process N

operating system

These are slightly modified versions of slides prepared by Steve Gribble

Program memaory:
Processes and virtual memory

OXFFFFFFFR
OS gives each process the
illusion of its own, private
memory 0
M®
. . ’ Q.
- this is called the process ”
0p)
address space % contains code, data,
. , ® libraries, stack, etc.
- contains the process .
virtual memory, visible only 3
to it O
o
» 232 bytes on 32 bit host
» 254 bytes on 64 bit host
0x00000000

These are slightly modified versions of slides prepared by Steve Gribble

Loading

When the OS loads a
program, it:

creates an address space

Inspects the executable file to
see what’ s in it

(lazily) copies regions of the
file into the right place in the
address space

does any final linking,
relocation, or other needed
preparation

OXFFFFFFF
OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

0x00000000

These are slightly modified versions of slides prepared by Steve Gribble

The stack

Used to allocate data
assoclated with function calls

- when you call a function,
compiler-inserted code will
allocate a stack frame to store:

v

the function call arguments
» the address to return to

» local variables used by the
function

» a few other pieces of bookkeeping

4 I
int £(int pl, int p2) {
int x;
int al[3];

return x;

. J
offset contents

24 P2

20 pl

16 return address

12 al2]

all]
4 a[0]
X

a stack frame

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main (int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

=P int main (int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

-

{

OS kernel [protected]

stack

main
argc, argv, nl

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

int main(int argc,
char **argv)
- int nl = £(3, -5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

-

{

OS kernel [protected]

stack

main
argc, argv, nl

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

int main(int argc,
char **argv)
- int nl = £(3, -5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

-

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

g
param

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

=P | int g(int param) {
return param * 2;

}

-

{

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

g
param

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

-

{

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

g
param

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

— x = g(al2]);
return Xx;

}

int g(int param) {
return param * 2;

}

-

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

OS kernel [protected]

stack

main
argc, argv, nl

f
pPl, p2, X, a

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

OS kernel [protected]

stack

main
argc, argv, nl

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

OS kernel [protected]

stack

main
argc, argv, nl

g9
param

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
—> return param * 2;

}

-

{

OS kernel [protected]

stack

main
argc, argv, nl

g9
param

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

OS kernel [protected]

stack

main
argc, argv, nl

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

-

-

int main(int argc,
char **argv)
int nl = £(3, -=-5);
nl = g(nl);
}

int f(int pl, int p2)
int x;
int al[3];

x = gl(al2]);
return X;

}

int g(int param) {
return param * 2;

}

{

~

OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

These are slightly modified versions of slides prepared by Steve Gribble

The stack In action

These are slightly modified versions of slides prepared by Steve Gribble

Addresses and the & operator

&foo produces “the address of” foo

~ N
#include <stdio.h>

int foo(int x) {

return x+1; $./addresses
} X is at Ox7f£f££4259338
Y 1s at Ox7ffff425933c
int main(int argc, char **argv) { al[0] is at Ox7ff££4259330
int x, y; all] 1s at O0x7f£ffff4259334

int al[2]; foo is at 0x4004f4
maln 1s at 0x400503

printf (" is at %p\n", &x);
printf (" is at %p\n", &y);

X
Y ;
"a[0] is at %p\n", &alo0
al[l] 1is at %p\n", &all
printf ("foo is at %p\n", &foo
printf ("main 1is at %$p\n", &mai

return 0;

addresses.c These are slightly modified versions of slides prepared by Steve Gribble

Pointers

type *name; // declare a pointer
type *name = address; // declare + initialize a pointer

a pointer is a variable that contains a memory address

- it points to somewhere in the process’ virtual address space

-
int main(int argc, char **argv) {
int x = 42;
int *p; // p 1s a polinter to an integer
p = &x; // P now stores the address of x

pointy.c . .
printf ("x is %d\n", x);

printf ("&x is %p\n", &x);
printf("p is %p\n", p);

return O;

A stylistic choice

C gives you flexibility in how you declare pointers

4)
int* pl; // these three are all basically the same

int * p2;

int *p3;

int *p4, *p5; // these two are basically the same
int* p6, *p7;

int* p8, p9; // bug?; equivalent to int *p8,; int p9;,

These are slightly modified versions of slides prepared by Steve Gribble

Dereferencing pointers

*polinter

*pointer = value;

// dereference a pointer
// dereference / assign

dereference: access the memory referred to by a pointer

deref.c

/#include <stdio.h> h
int main(int argc, char **argv) {
int x = 42;
int *p; // p 1s a polinter to an integer
p = &x; // p now stores the address of x
printf("x is %d\n", x);
*p = 99;
printf("x is %d\n", x);
return O;
\} J

These are slightly modified versions of slides prepared by Steve Gribble

Self exercise #1

Write a function that:;
- accepts an array of 32-bit unsigned integers, and a length
- reverses the elements of the array In place

- returns void (nothing)

These are slightly modified versions of slides prepared by Steve Gribble

Self exercise #2

Write a function that:

- accepts a function pointer (!) and an integer as an argument

- Invokes the pointed-to function

» with the Integer as Iits argument

These are slightly modified versions of slides prepared by Steve Gribble

Self exercise #3

Write a function that:
- accepts a string as a parameter

- returns

»the first whitespace-separated word in the string
(as a newly allocated string)

» and, the size of that word

These are slightly modified versions of slides prepared by Steve Gribble

See you on Monday!

These are slightly modified versions of slides prepared by Steve Gribble

