
CSE 333
Lecture 1 - Intro, C refresher

Welcome!

Today’s goals:

• introductions

• course syllabus

• quick C refresher

• why C?

Us

John Zahorjan

James Okada

Johnny Yan

Renshu Gu

Overloading

The overload signup sheet is down here

- come sign up after lecture

- I’ll hand the sheet in to the ugrad advisors

- by Monday, they’ll let me (and you) know who gets in

Welcome!

Today’s goals:

- introductions

- course syllabus

- quick C refresher

Course map: 100,000 foot view

hardware

operating system
HW/SW interface

(x86 + devices)

CPU memory storage network

GPU clock audio radio peripherals

OS / app interface

(system calls)

C standard library

(glibc)

C application

C++ STL / boost /

standard library

C++ application

JRE

Java

application

The Cost of Layering

#include <stdio.h>

#include <stdlib.h>

#define N 1000000

int main(int argc, char** argv) {

 int i, nTrials, trial;

 long int grandSum, sum, data[N];

 nTrials = atoi(argv[1]);

 for (i=0; i<N; i++) data[i] = random();

 grandSum = 0L;

 for (trial = 0; trial < nTrials; trial++) {

 sum = 0L;

 for (i=0; i<N; i++) sum += data[i];

 grandSum += sum;

 }

 printf("Grand sum = %ld\n", grandSum);

}

import java.util.Random;

class timingTest {

 private static final int N = 1000000;

 public static void main(String[] args) {

 long data[] = new long[N];

 Random random = new Random();

 for (int index=0; index<1000000; index++)

 data[index] = random.nextInt();

 int nTrials = Integer.parseInt(args[0]);

 long grandSum = 0L;

 for (int trial = 0; trial < nTrials; trial++) {

 int sum = 0;

 for (int i=0; index<N; i++) sum += data[i];

 grandSum += sum;

 }

 System.out.println(

 String.format("Grand sum = %d\n", grandSum)

);

 }

}

import java.util.Random;

class timingTestLong {

 private static final int N = 1000000;

 public static void main(String[] args) {

 Long data[] = new Long[N];

 Random random = new Random();

 for (Integer index=0; index<N; index++)

 data[index] = random.nextLong();

 Integer nTrials = Integer.parseInt(args[0]);

 Long grandSum = 0L;

 for (int trial = 0; trial < nTrials; trial++) {

 Long sum = 0L;

 for (Integer i=0; index<N; i++) sum += data[i];

 grandSum += sum;

 }

 System.out.println(

 String.format("Grand sum = %d\n", grandSum)

);

 }

}

timingTest.c timingTest.java timingLong.java

C Java long Java Long

The Cost of Layering

Trials C –O0 C –O3 Java long Java Long

10 .040

100 .224

1000 2.100

Times in seconds

The Cost of Layering

Trials C –O0 C –O3 Java long Java Long

10 .040 .020

100 .224 .056

1000 2.100 .480

Times in seconds

The Cost of Layering

Trials C –O0 C –O3 Java long Java Long

10 .040 .020 .080

100 .224 .056 .136

1000 2.100 .480 .648

Times in seconds

The Cost of Layering

Trials C –O0 C –O3 Java long Java Long

10 .040 .020 .080 .464

100 .224 .056 .136 1.936

1000 2.100 .480 .648 13.473

Times in seconds

Systems programming

The programming skills, engineering discipline, and

knowledge you need to build a system

- programming: C / C++

- discipline: testing, debugging, performance analysis

- knowledge: long list of interesting topics

‣ concurrency, OS interfaces and semantics, techniques for

consistent data management, distributed systems algorithms, ...

‣ most important: a deep understanding of the “layer below”

Quiz: is data safely on disk after a “write()” system call returns?

Discipline?!?

Cultivate good habits, encourage clean code

- coding style conventions

- unit testing, code coverage testing, regression testing

- documentation (code comments, design docs)

- code reviews

Will take you a lifetime to learn

- but oh-so-important, especially for systems code

‣ avoid write-once, read-never code

What you will be doing

Attending lectures and sections

- lectures: ~28 of them, MWF in this room

- sections: ~10 of them, Thu (8:30, 9:30, or 10:30)

Doing programming projects

- 5 of them, successively building on each other

- includes C, C++; file system, network, possibly concurrency

Doing programming exercises

- one per lecture, due before the next lecture begins

- coarse-grained grading (0,1,2,3)

Exams

One possibility:

• Midterm, Friday, November 1

• Final, Wednesday, December 11

Course calendar

Linked off of the course web page

- master schedule for the class

- will contain links to:

‣ lecture slides

‣ code discussed in lectures

‣ assignments, exercises (including due dates)

Welcome!

Today’s goals:

- introductions

- course syllabus

- quick C refresher

C

Created in 1972 by Dennis Ritchie

 designed for creating system software

 portable across machine architectures

 most recently updated in 1999 (C99) and 2011 (C11)

Characteristics

- low-level, smaller standard library than Java

- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

C workflow

Editor

(emacs, vi)

or IDE

(eclipse)

foo.c

source

files

(.c, .h)

foo.h

bar.c

edit
bar

link

link

executable

execute,

debug,

profile,

...

libZ.a

statically linked

libraries

libc.so

shared

libraries

load
bar

process

link
bar.o

object

files

(.o)

compile

foo.o

From C to machine code
int dosum(int i, int j) {

 return i+j;

}

C source file
(dosum.c)

C compiler (gcc -S)

dosum:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

popl %ebp

ret

assembly source file
(dosum.s)

assembler (as)

80483b0: 55

89 e5 8b 45

0c 03 45 08

5d c3

machine code
(dosum.o)

Skipping assembly language

Most C compilers generate .o files (machine code)

directly

- i.e., without actually saving the readable .s assembly file

dosum.c gcc -S dosum.s as dosum.o

gcc -c

Compiling multi-file programs

Multiple object files are linked to produce an executable

- standard libraries (libc, crt1, ...) are usually also linked in

- a library is just a pre-assembled collection of .o files

dosum.c dosum.o gcc -c

sumnum.c sumnum.o gcc -c

ld

(or gcc)
sumnum

libraries
(e.g., libc)

Multi-file C programs

int dosum(int i, int j) {

 return i+j;

}

C source file
(dosum.c)

#include <stdio.h>

int dosum(int i, int j);

int main(int argc, char **argv) {

 printf("%d\n", dosum(1,2));

 return 0;

}

C source file
(sumnum.c)

Multi-file C programs

int dosum(int i, int j) {

 return i+j;

}

C source file
(dosum.c)

#include <stdio.h>

int dosum(int i, int j);

int main(int argc, char **argv) {

 printf("%d\n", dosum(1,2));

 return 0;

}

C source file
(sumnum.c)

dosum() is

implemented

in dosum.c

This “prototype” of

dosum() tells gcc about

the types of dosum’s

arguments and its return

value

#include <stdio.h>

int dosum(int i, int j);

int main(int argc, char **argv) {

 printf("%d\n", dosum(1,2));

 return 0;

}

C source file
(sumnum.c)

Multi-file (Multi-compile) C programs

where is the

implementation

of printf?

why do we need

this #include?

int dosum(int i, int j) {

 return i+j;

}

C source file
(dosum.c)

External symbols and linking
sumnum.o, dosum.o are object files

• each contains machine code produced by the compiler

• each might export global symbols (that can be referenced from other

files)

• each might use external symbols

• variables and functions not defined in the associated .c file

• the compiler needs to know the type of an external symbol (so it can type

check), but not the full implementation

• linking resolves these external symbols

• connects the name to the definition

Let’s dive into C itself

Things that are the same as Java

- syntax for statements, control structures, function calls

- primitive types: int, double, char, long, float

- type-casting syntax: float x = (float) 5 / 3;

- expressions, operators, precedence

‣ + - * / % ++ -- = += -= *= /= %= < <= == != > >= && || !

- scope (local scope is within a set of { } braces)

- comments: /* comment */ // comment

Similar to Java...
- variables and scope

 C99: don’t have to declare at start of a function or block

 C doesn’t require initialization before use! (gcc -Wall will warn)

#include <stdio.h>

int main(int argc, char **argv) {

 int x, y = 5; // note x is uninitialized!

 long z = x+y;

 printf("z is '%ld'\n", z); // what’s printed?

 {

 int y = 10; // always ok

 printf("y is '%d'\n", y);

 }

 int w = 20; // ok in c99

 printf("y is '%d', w is '%d'\n", y, w);

 return 0;

}

varscope.c

Similar to Java...

const

- a qualifier that indicates the variable’s value cannot change

- compiler will issue an error if you try to violate this

- why is this qualifier useful?

#include <stdio.h>

int main(int argc, char **argv) {

 const double MAX_GPA = 4.0;

 printf("MAX_GPA: %g\n", MAX_GPA);

 MAX_GPA = 5.0; // illegal! Compile time error

 return 0;

}

consty.c

Similar to Java...

for loops

- C99: can declare variables in the loop header

if/else, while, and do/while loops

- C99: bool type supported, with #include <stdbool.h>

- any type can be used: 0 means false, everything else true

 int i;

 for (i = 0; i < 100; i++) {

 if (i % 10 == 0) {

 printf("i: %d\n", i);

 }

 }

loopy.c

Similar to Java...

parameters / return value

- C always passes

arguments by value

- “pointers”

• let you pass thing pointed

to by reference

• more on these soon

• least intuitive part of C

• very dangerous part of C

void add_pbv(int c) {

 c += 10;

 printf("pbv c: %d\n", c);

}

void add_pbr(int *c) {

 *c += 10;

 printf("pbr *c: %d\n", *c);

}

int main(int argc, char **argv) {

 int x = 1;

 printf("x: %d\n", x);

 add_pbv(x);

 printf("x: %d\n", x);

 add_pbr(&x);

 printf("x: %d\n", x);

 return 0;

}

pointy.c

Very different than Java

arrays

- just a bare, contiguous block of memory of the correct size

- an array of 10 ints requires 10 x 4 bytes = 40 bytes of

memory

arrays have no methods, do not know their own length

- C doesn’t stop you from overstepping the end of an array!!

‣ (Or the beginning of an array!!)

- many, many security bugs come from this

Very different than Java

C doesn’t have strings, it has a string convention

- “strings” are just arrays of char

- Are terminated by the NULL character ‘\0’

- Are not objects, have no methods; string.h has helpful

utilities that follow the convention

 char *x = ”hello\n”;

x h e l l o \n \0

Very different than Java

Errors and exceptions

- C has no exceptions (no try / catch)

- errors are returned as integer error codes from functions

- makes error handling ugly and inelegant

Crashes

- if you do something bad, you’ll end up spraying bytes

around memory, hopefully causing a “segmentation fault”

and crash

Objects

- there aren’t any; struct is closest feature (set of fields)

Very different than Java

Memory management

- you must to worry about this; there is no garbage collector

- local variables are allocated on the stack

 freed when you return from the function

- global and static variables are allocated in a data segment

 freed only when your program exits

- you can allocate memory in the heap using malloc()

‣ you must free malloc’ed memory with free()

‣ failing to free is a leak, double-freeing is an error (hopefully crash)

Very different than Java

Libraries you can count on

- C has very few compared to most other languages

- no built-in trees, hash tables, linked lists, sort , etc.

- you have to write many things on your own

 particularly data structures

 error prone, tedious, hard to build efficiently and portably

- this is one of the main reasons C is a much less productive

language than Java, C++, python, or others

Very different than Java…

integer types

- char, int

floating point

- float, double

modifiers

- short [int]

- long [int, double]

- signed [char, int]

- unsigned [char, int]

type
bytes

(32 bit)

bytes

(64 bit)
32 bit range printf

char 1 1 [0, 255] %c

short int 2 2 [-32768,32767] %hd

unsigned short int 2 2 [0, 65535] %hu

int 4 4
[-214748648,

2147483647]
%d

unsigned int 4 4 [0, 4294967295] %u

long int 4 8
[-2147483648,

2147483647]
%ld

long long int 8 8
[-9223372036854775808,

9223372036854775807]
%lld

float 4 4 approx [10-38, 1038] %f

double 8 8 approx [10-308, 10308] %lf

long double 12 16 approx [10-4932, 104932] %Lf

pointer 4 8 [0, 4294967295] %p

See sizeofs.c Portability

C99 extended integer types

Solves the conundrum of “how big is a long int?”

#include <stdint.h>

void foo(void) {

 int8_t w; // exactly 8 bits, signed

 int16_t x; // exactly 16 bits, signed

 int32_t y; // exactly 32 bits, signed

 int64_t z; // exactly 64 bits, signed

 uint8_t a; // exactly 8 bits, unsigned

 ...etc.

}

For Friday

Homework 0 is due:

- http://www.cs.washington.edu/education/courses/cse333/13au/assignments/hw0/hw0.html

Exercise 0 is due:

- http://www.cs.washington.edu/education/courses/cse333/13au/exercises/ex0.html

http://www.cs.washington.edu/education/courses/cse333/13au/assignments/hw0/hw0.html
http://www.cs.washington.edu/education/courses/cse333/13wi/exercises/ex0.html

See you on Friday!

