
CSE 333 – SECTION 8
Threads

Threads
• A (single) thread is a sequential execution of a program.
• Contained within a process.
• Multiple threads can exist within the same process.

• Every process starts with one thread, can spawn more.

• Threads in a single process share one address space
• Instructions (code)
• Static (global) data
• Dynamic (heap) data
• Environment variables, open files, sockets, etc.

• Each thread has it’s own stack.

POSIX threads (Pthreads)
• The POSIX standard provides APIs for creating and

manipulating threads.
• Part of the standard C/C++ libraries, declared in

pthread.h.
• Use -pthread option on gcc/g++ to compile/load.

Core pthread functions
• pthread_create(thread, attr, start_routine, arg)
• pthread_exit(status)
• pthread_join(thread, status)
• pthread_cancel (thread)

pthread_create
#include <pthread.h>

int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);
• Create a new thread and run start_routine with arg as its parameter.
• Arguments:

• thread: A unique identifier for the new thread.
• attr: An object that may be used to set thread attributes. Use NULL for defaults.
• start_routine: The C routine the thread will execute once it is created.
• arg: A single argument that is passed to start_routine. Can be anything, but must

cast to void* in the call. Use NULL if no appropriate argument.

Terminating Threads
• There are several ways in which a thread may be

terminated:
• Thread starting routine does a normal return.
• The thread calls pthread_exit to terminate the thread.
• The thread is canceled by another thread using pthread_cancel.
• The entire process is terminated by a call to exec(), exit()or

by a return from main().

pthread_exit
void pthread_exit(void *retval);

• Terminate the current thread; retval can be retrieved
by another thread after a successful join (use NULL if no
useful information).

• Often not needed if the initial function in the thread returns
normally.

• main()can call pthread_exit() to finish and leave
other threads running; all other threads terminate when
main() returns or exits by calling exit().

pthread_join
int pthread_join(pthread_t thread, void **retval);

Synchronization between threads.
• pthread_join blocks the calling thread until the specified thread

terminates and then the calling thread continues (i.e., “joining” the
terminated thread).

• Only threads that are created as joinable can be joined; a thread
created as detached can never be joined. (See pthread_create)

• The target thread's termination return status can be obtained if it was
specified in the target thread's call to pthread_exit().

 Demo: pthread_demo.c

Section exercise (not to be turned in)
• Create a program that spawns two or three different

threads, each of which prints a numeric sequence.
Examples:
• First n odd numbers
• First n factorials
• First n primes

• Use pthread_demo.c for ideas, but the structure might not
be the same.

• Can you do something in the threads (maybe sleep()) so
that different runs of the program don’t always produce
the same output?

Exercise 11
• Implement a chat program in C++.
• Create two threads – Server and the Client.
• The Client thread reads from stdin, and writes anything

the user types to the network.
• The Server thread reads from the network, and writes

anything that it receives to stdout.
• Feel free to use any sample code from lectures or other

exercises to implement the above functions.

Questions?

	CSE 333 – Section 8
	Threads
	POSIX threads (Pthreads)
	Core pthread functions
	pthread_create
	Terminating Threads
	pthread_exit
	pthread_join
	Section exercise (not to be turned in)
	Exercise 11

