
CSE 333 – SECTION 4
References, Classes and const.

This or that?

• Consider the following code:

Pointers: References:

int i; int i;

int *pi = &i; int &ri = i;

In both cases,

The difference lies in how they are used in expressions:
 *pi = 4; ri = 4;

C++ const declaration

• As a declaration specifier, const is a type specifier that

makes objects unmodifiable.

int const m = 255;

• Reference to constant integer:

int n = 100;

int const &ri = n; //ri becomes read only

When to use?

• Function parameter types and return types and functions

that declare overloaded operators.

• Pointers: may point to many different objects during its

lifetime. Pointer arithmetic (++ or --) enables moving from

one address to another. (Arrays, for e.g.)

• References: can refer to only one object during its

lifetime.

• Style Guide Tip:

• use const reference parameters to pass input

• use pointers to pass output parameters

• input parameters first, then output parameters last

Example – Pass by Reference (Recap)

void swap(int &x, int &y) {

int tmp = x;

x = y;

y = tmp;

}

int main(int argc, char **argv) {

int a = 5, b = 10;

swap(a, b);

cout << "a: " << a << "; b: " << b << endl;

return EXIT_SUCCESS;

}

C++ Classes

class Point {

public:

Point(const int x, const int y); // constructor

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double Distance(const Point &p) const; // member function

void SetLocation(const int x, const int y);//member functn

private:

int x_; // data member

int y_; // data member

}; // class Point

Section Exercise – Part I (Required)
Due Friday (7/13) by 11pm

• Define a class Rectangle whose instance variables are a

pair of Point objects (upper left, lower right).

• Include at least one constructor. Make sure you get const

right in the right places.

• Methods:

• getul(), getlr() - returns upper and lower points.

• cornerPoints() – to obtain the corner points.

• area() - returns the Rectangle's area.

• contains(Point &p) - returns true or false depending on whether

point p is inside the rectangle.

• The C++ Primer text and cplusplus.com

contain good reference material.

Part II (Optional)

• Add a second constructor that takes 4 coordinates (minx,

maxx, miny, maxy) and creates the upper left/lower right

Point instance variables.

• Make the first constructor smart enough so the points can

be any two diagonal corners and the constructor figures

out what the top/bottom/left/right coordinates are and

constructs upper left/lower right instance Point instance

variables accordingly

• Additional Methods:

• Intersects(Rectangle &other) - returns true if this rectangle

intersects the other one.

• BoundingBox(Rectangle &other) - returns a new rectangle that

tightly encloses both this rectangle and other.

