
CSE333 – SECTION 3
Non-STDIO POSIX Functions

Contents

• STDIO vs. POSIX Functions

• read/write Behavior and Errors

• Working with Directories

• Section Exercise

STDIO vs. POSIX Functions

• Recall the exercise from section 1

• fopen(), fread(), fwrite(), fclose() from stdio.h

• fopen() returns a FILE*

• Used for buffered IO

• Under the hood, these contain a file descriptor

• An integer that indexes a table in the OS that keeps track of any

state associated with open files

• POSIX system calls

• open(), read(), write(), close()

• Very low level

• Uses file descriptors instead of FILE* for unbuffered IO

• The STDIO functions are implemented using these functions

read()/write() Behavior and Errors

• read() returns the number of bytes read

• May be less than you asked for

• It’s the same with write()

• Furthermore, there is an error that isn’t really an error!

• EINTR indicates that the call was interrupted by a signal handler

• This just means that you should try again

• So how do you get all N bytes you asked for?

• We still need one more piece

Checking for Errors

• If the POSIX functions encounter an error, they return -1

• In addition to this, errno, a global variable, is set to give

more information about what went wrong

• Many C library functions use this variable as well

• #include <errno.h> to access errno and check it against

various error codes

• EINTR is the only one we’ll worry about right now

• See the man pages for other errors you could encounter

• man 3 errno for more general info on this variable

Reading N Bytes From a File

#include <errno.h>

#include <unistd.h> // for POSIX functions

…

char buf[N+1];

int bytes_read = 0;

while (bytes_read < N) {

 int result = read(fd, buf + bytes_read, N – bytes_read);

 if (result == -1) {

 if (errno != EINTR)

 // real error, handle appropriately

 else

 result = 0;

 }

 bytes_read += result;

}

buf[N] = ‘\0’;

Working with Directories

• First, let’s get some information about the file with stat()
• man 2 stat

• Once we know that a file is a directory, we can try to open

it with opendir()
• man 3 opendir

• Assuming we were able to open it, we’ll use readdir() to

get its contents, one at a time
• man 3 readdir

• Lastly, we’ll use closedir() when we’re done with it
• man 3 closedir

Section Exercise

• Find a partner if you wish

• Part I: (required)

• Given a command line argument, if it is an ordinary file, print its

contents to stdout.

• If not, or some other error occurs, print an informative error message.

• Similar to cat

• You must use the POSIX functions, but printf is fine for output

• Part II: (optional)

• Given a command line argument, if it is a directory name, list the

names of all the files in the directory.

• A very basic ls

