CoE 333

Lecture 9 - intro to C++

Hal Perkins
Department of Computer Science & Engineering
University of Washington

S
-

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Administrivia & Agenda

Main topic: Intro to C++

But first:
Some hints on HW?2

Labs: The painting, remodeling, and upgrades continue. We are
going to be short on lab space over the next couple of weeks. So...

Temp lab space in Sieg 327 starting this Wednesday for two weeks.
More info as we learn more.

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

(SN}

)

T = word start
T = word end

CSES333 lec 9 C++.1 // 07-09-12 // perki

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

H

)

T = word start
T = word end

CSES333 lec 9 C++.1 // 07-09-12 // perki

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

t 1

T = word start
T = word end

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

T = word start
T = word end

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

T = word start
T = word end

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

T = word start
T = word end

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

(8]

()

T = word start
T = word end

CSES333 lec 9 C++.1 // 07-09-12 // perki

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

t

1"

T = word start
T = word end

CSES333 lec 9 C++.1 // 07-09-12 // perki

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

t 1

T = word start
T = word end

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

T = word start
T = word end

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”

when processing a query
Iinitial search

592 result list

awesome —» <

assignment —

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

52

awesome —» <

assignment —

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

final search
result list

awesome —»

82;

-

assignment —

CSE333 lec 9 C++.1 // 07-09-12 // perkins

HWZ2: ugly hack

#include "11.h"
void LLNullFree (void *el) { }

int main(int argc, char **argv) ({
int res = 52;
LinkedList 11 = AllocateLinkedList() ;
assert(ll '= NULL) ;

// Store the some ints in the linked list without
// needing to call malloc. How? By abusing

// UGLY HACK ALERT! Q: when is this safe?
PushLinkedList (11, (void *) res);
PushLinkedList (11, (void *) 87);
PopLinkedList (11, (void **) &res);

// Free the linked list. Since the payload is
// not a pointer to heap-allocated memory, our
// free function should do nothing.
FreeLinkedList (11, &LLNullFree) ;

return O;

// type casting and casting an (int) to a (void *).

2 // perkins

HW?2

We provide you with our libhw1.a

- A FAQ: “test_suite crashes inside InsertHashTable(). | think
this means your libhw1.a has a bug in it.”

» probably not; more likely it means that your code has a bug in it that
stomps over the memory that libhw1.a relies on

but, if you really think we have a bug in our libhw1.a, send us the
simplest piece of code that replicates the problem, and we’ll check

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Today’s goals

An introduction to C++
- some shortcomings of C that C++ addresses
- Qgive you a perspective on how to learn C++

- Kick the tires and write some code

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

We had to work hard to mimic encapsulation, albstraction

- encapsulation: hiding implementation details

» used header file conventions and the “static” specifier to separate
private functions from public functions

» hid structure definitions to hide implementation-specific details

- abstraction: associating behavior with encapsulated state

» the functions that operate on a LinkedList were not really tied to the
linked list structure

we passed a linked list to a function, rather than invoking a method
on a linked list instance

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

A major addition is Its support for objects

- Cclasses
» public, private, and protected methods and instance variables
» (multiple!) inheritance

- polymorphism

» static polymorphism: multiple functions or methods with the
same name, but different argument types

dynamic polymorphism: derived classes can overload methods of
parents, and methods will be dispatched correctly

CSE333 lec 9 C++.1 // 07-09-12 // perkins

We had to emulate generic data structures

- customer passes a (void *) as a payload to a linked list

- customer had to pass in function pointers so that the linked
list could operate on payloads correctly

» comparisons, deallocation, etc.

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

Supports templates to facilitate generic data types!

- to declare that x Is a vector of Ints;
» vector<int> x;
- to declare that x is a vector of floats:

» vector<float> x;

- to declare that x is a vector of (vectors of floats):

» vector<vector<float> > x;

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

We had to be careful about namespace collisions

- C distinguishes between external and internal linkage
» use “static” to prevent a name from being visible outside a module

» otherwise, a name is global -- visible everywhere

- we used naming conventions to help avoid collisions in the
global namespace

» LLlteratorNext, HTlteratorNext, etc.

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

Permits a module to define its own namespace!
- the linked list module could define an “LL." namespace
- the hash table module could define an “HT” namespace

- pboth modules could define an lterator class
» one would be globally named LL: : Iterator

» the other would be globally named HT: : ITterator

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C does not provide any standard data structures

- we had to implement our own linked list and hash table

- as a C programmer, you often re-invent the wheel badly
» maybe if you’re clever you’ll use somebody else’s libraries

» but, C’s lack of abstraction, encapsulation, and generics means
you'll probably have to tweak them, or tweak your code to use them

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

The C++ standard library is rich!

generic containers: bitset, queue, list, map, queue, set,
stack, and vector

» and, iterators for most of these

» plus, algorithm libraries that use them (we won’t cover extensively)
a string class: hides the implementation of strings

streams: allows you to stream data to and from objects,
consoles, files, strings, and so on

and more...

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

Error handling Is a pain
- have to define error codes and return them

customers have to understand error code conventions, and
need to constantly test return values

ifa() calls b() calls ¢()

» a depends on b to propagate an error in ¢ back to it

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C

Supports exceptions!

- try / throw / catch

if used with discipline, can simplify error processing
- but, if used carelessly, can complicate memory management

- consider: a() calls b() callsc()

» if ¢() throws an exception that b() doesn’t catch, you might not get
a chance to clean up resources allocated inside b()

Mixed success - added late to C++ so much code does
not use exceptions, or mixes them with return codes

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Some tasks still hurt iIn C

Memory management

- C++ has no garbage collector

» you have to manage memory allocation and deallocation, and track
ownership of memory

» It’s still possible to have leaks, double frees, and so on
- but, there are some things that help
» “smart pointers”
e classes that encapsulate pointers and track reference counts

e deallocate memory when the reference count goes to zero

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Some tasks still hurt iIn C

C++ doesn’t guarantee type or memory safety

- You can still...
forcibly cast pointers between incompatible types
walk off the end of an array and smash the stack
have dangling pointers

conjure up a pointer to an address of your choosing

CSE333 lec 9 C++.1 // 07-09-12 // perkins

C++ has many, many features.

Operator overloading

- your class can define methods for handling “+”, “->", etcl!
Object constructors, destructors

- particularly handy for stack-allocated objects

Reference types

- truly pass-by-reference instead of pass-by-value

Advanced OO

- multiple inheritance, virtual base classes, dynamic dispatch

CSE333 lec 9 C++.1 // 07-09-12 // perkins

How 1o think about C

How 1o think about C

W

set of styles
and ways to
use C

How 1o think about C

set of styles
and ways to
use C++ \

set of styles
and ways to
use C

CSES333 lec 9 C++.1 // 07-09-12 // perkins

How 1o think about C

set of styles
and ways to
use C++ \

good styles
and robust
engineering

practices set of styles

and ways to
use C

CSE333 lec 9 C++.1 // 07-09-12 // perkins

How 1o think about C

set of styles
and ways to
use C++ \

good styles
and robust
engineering

practices set of styles

and ways to
use C

CSE333 lec 9 C++.1 // 07-09-12 // perkins

in the hands of a but, if you’re not so

disciplined programmer, disciplined about how
C++ is a powerful weapon you use C++...

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

/

#include <iostream>
#include <cstdlib>

2t
helloworld.cc

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
.

Looks simple enough...

- compile with g++ instead of gcc:

» gt++ -Wall -o helloworld helloworld.cc

- let’s walk through the program step by step

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

2t
helloworld.cc

#include cstdlib>

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
.

jostream is part of the C++ standard library

- note you don’t write “.n” when you include standard library
headers - actual header file name is an implementation issue

» but you do write “.n” for local headers (e.g., #include “Il.nh")

- lostream declares stream object instances, including std::cin,
std::cout, std::cerr, in the “std” namespace

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

/
#include <iostream>

heIIovvorId.cc\
[«

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}
.

cstdlib is the C standard library’s stdlib.h header

- all C standard library functions are available to you
» for header foo.h, you should #include <cfoo>

- we need it for EXIT_SUCCESS, as usual

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

/

#include <iostream>
#include <cstdlib>

2t
helloworld.cc

in(int argc, char **argv) {

@ < "Hello, World!" << std::endl;

XIT SUCCESS;

std::cout Is the “cout” object instance declared by
lostream.h, living within the “std” namespace

- std::cout is an object of class ostream

» http://www.cplusplus.com/reference/iostream/ostream/

- used to format and write output to the console

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

/

#include <iostream>
#include <cstdlib>

2t
helloworld.cc

in(int argc, char **argv) {

@ < "Hello, World!" << std::endl;

XIT SUCCESS;

C++ distinguishes between objects and primitive types

- primitive types include all the familiar ones from C
» char, short, unsigned long, float, double, long double, etc.

» and, C++ defines “bool” as a primitive type (woohoo!)

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

/

#include <iostream>
#include <cstdlib>

int main(int gc, char **argv) ({
std::cou< ;i }Hello, World!" << std::endl;
return EXIT UCCESS;

}
.

2t
helloworld.cc

“<<” is an operator defined by the C++ language

- it’s defined by C as well; in CG/C++, it bitshifts integers

- but, C++ allows classes to overload operators
» the ostream class overloads “<<”

» |.e., It defines methods that are invoked when an ostream Is
the LHS of the << operator

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

-

#include <iostream>
#include <cstdlib>

int main(int gc, char **argv) ({
std::cou< ;i }Hello, World!" << std::endl;
return EXIT UCCESS;

}
.

2t
helloworld.cc

ostream has many different methods to handle <<
- the methods differ in the type of the RHS of <<

- ifyou do std::cout << “foo”;

» C++ invokes cout’s method to handle “<<” with RHS “char *”

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

/

#include <iostream>
#include <cstdlib>

2t
helloworld.cc

int main(ini char **argv) {
std: :cout << "Hello, World! < std::endl;
recturn s U i ;i

}
. V.

the ostream class’s methods that handle “<<” return (a reference
to) themselves

- S0, when (std::cout << “Hello, World!”) is evaluated:
» a method of the std::cout object is invoked
» It buffers the string “Hello, World!” for the console

» and, it returns (a reference to) std::cout

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Hello, world!

/

#include <iostream>
#include <cstdlib>

int main(int argc, char **argv)
std: :cout << "Hello, World!'(<K< std::endl;
return EXIT SUCCESS;

}

o

2t
helloworld.cc

next, a method on std::cout to handle “<<” Is invoked
- this time, the RHS is std: :endl
- turns out this is a pointer to a “manipulator” function

» this manipulator function writes newline to the ostream it is
Invoked on, and then flushes the ostream’s buffer

» SO, something is printed on the console at this point

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Wow...

-

helloworld.cc)
#include <iostream> elioworia.ccC

#include <cstdlib>

int main(int argc, char **argv) ({
std: :cout << "Hello, World!" << std::endl;
return EXIT SUCCESS;

}

o

You should be surprised and scared at this point

- G++ makes it easy to hide a significant amount of complexity
» it’s powerful, but really dangerous

» once you mix together templates, operator overloading, method
overloading, generics, and multiple inheritance, and it gets really
hard to know what’s actually happening!

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Refining 1t a bit...

-

s
#include <iostream> helloworld?2.cc
#lnﬁ-l 11da <rc+Al 1b>

using namespace std;

int main(int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}

-

C++’s standard library has a std: :string class!

- Include the string header to use it

- http://www.cplusplus.com/reference/string/

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Refining 1t a bit...

-

N
#include <iostream> helloworld2.cc
#include <cstdlib>
#include <string>

int main(int argc, char **argv) {
string hello("Hello, World!");
cout << hello << endl;
return EXIT SUCCESS;

}
< Y,

The “using” keyword introduces part of a namespace, or
an entire namespace, into the current region

- using namespace std; -- Imports all names from std::

- using std::cout; --imports only std::cout

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Refining 1t a bit...

e N
#include <iostream> helloworld?2.cc

#include <cstdlib>
#include <string>

using namespace std;

Q char **argv) ({

string hello ("Helbb, World!");

cou o << endl;
return EXIT_SUCCESS;

}

-

We're instantiating a std: : string object on the stack

- passing the C string “Hello, World!” to its constructor method

» “hello” is deallocated (and its destructor invoked) when main returns

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Refining 1t a bit...

-
#include <iostream>

#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char **argv) {

stripng hello ("Hello, World!");
retu ; __SUCCESS;

}

-

helloworld2.cc)

v

The C++ string library overloads the << operator as well

- defines a function (not an object method)

that is iInvoked when

the LHS is an ostream and the RHS is a std::string

» http://www.cplusplus.com/reference/string/operator<</

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Refining 1t a bit...

-

N
#include <iostream> helloworld2.cc
#include <cstdlib>
#include <string>

using namespace std;

° 21]lo ("Hello World!") ;
hello €< endl; 3
ccarn EXIT SUC :

Note the side-effect Of using namespace std;

- can now refer 1o std: :string by string, std: :cout
by cout, and std: :endl Dy endl

CSE333 lec 9 C++.1 // 07-09-12 // perkins

string concatenation

i o
#include <iostream> concat.cc
#include <cstdlib>

using namespace std;
int main(int argc, char **argv) ({

cout << he
return EXIT_SUCCESS;

}

A

The string class overloads the “+” operator

- creates and returns a new string that is the concatenation of
LHS and RHS

CSE333 lec 9 C++.1 // 07-09-12 // perkins

string assignment

i o
#include <iostream> concat.cc
#include <cstdlib>

using namespace std;

int main(int argc, char **argv) ({
sitzing hello("Hello") ;
ello s therals
CcOoU < hello << endl;
return EXIT SUCCESS;
}

A

The string class overloads the “=" operator

- copies the RHS and replaces the string’s contents with it

» S0, the full statement (a) “+” creates a string that is the
concatenation of hello’s current contents and “ there”, and
(b) “=” creates a copy of the concatenation to store in hello

CSE333 lec 9 C++.1 // 07-09-12 // perkins

stream manipulators

7 o
#include <iostream> helloworld3.cc
#include <cstdlib>

#includs

using namespace std;

int main(int argc, char **argv) ({
cout << "Hi! " << setw(4) <K 5§ < " " KK 5 K< endl;
coutHi<c<Hhexi<<{HioHGO NI S S andilt:
cout << dec <K 16 << " " KL 13 <K< endl;
return EXIT SUCCESS;

}
\ J

lomanip defines a set of stream manipulator functions

- pass them to a stream to affect formatting

» http://www.cplusplus.com/reference/iostream/manipulators/

CSE333 lec 9 C++.1 // 07-09-12 // perkins

stream manipulators

7 B
#include <iostream> helloworld3.cc
#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, charX**argv) ({
cout << "Hi! " 5<< " " << 5 << endl;
cout << hex << 16 << 13 << endl;

cout << dec << 16 << " " K< 13 << endl;
return EXIT_SUCCESS;

}

-

setw(x) sets the width of the next field to x

- only affects the next thing sent to the output stream

CSE333 lec 9 C++.1 // 07-09-12 // perkins

stream manipulators

7 B
#include <iostream> helloworld3.cc
#include <cstdlib>

#include <iomanip>

using namespace std;

int main(int argc, char **argv) ({
cout << "Hi! " << setw(4) <K 5§ < " " KK 5 << endl;
cout & hex <P16 << " " << 13 << endl;
cout & dec <P16 << " " << 13 << endl;
return EXIT SUCCESS;

}
\ J

hex Sets the stream to output integers in hexadecimal

- stays in effect until you set the stream to some other base

- hex, dec, oct are your choices

CSE333 lec 9 C++.1 // 07-09-12 // perkins

You can still use printf, though

helloworld4.cc)

#include <cstdio>
#include <cstdlib>

int main(int argc, char **argv) ({
printf ("hello from C\n") ;
return EXIT SUCCESS;

}

&

C Is (roughly) a subset of C++

Advice: Use C++ libraries unless you need C’s versions.
C and C++ libraries mix ok, but there are edge cases.

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Reading

#include <iostream>
#include <cstdlib>

helloworld5.cc\

using namespace std;

int main(int argc, char **arqgv) ({
int num;
cout << "Type a number: ";
cin >> num;
cout << "You typed: " << num << endl;
return EXIT SUCCESS;

}

h

std::cin is an object instance of class istream

- supports the >> operator for “extraction”

- cin also has a getline() method

CSE333 lec 9 C++.1 // 07-09-12 // perkins

Exercise 1

Write a C++ program that:

- uses streams to:
» prompts the user to type in 5 floats
» prints them out in opposite order

» with 4 digits of precision

CSE333 lec 9 C++.1 // 07-09-12 // perkins

See you on Wednesday!

CSE333 lec 9 C++.1 // 07-09-12 // perkins

