CSE 333

| ecture 22 - tools!

Hal Perkins
Department of Computer Science & Engineering
University of Washington

S
S

CSE333 lec 20 tools // 08-13-12 // perkins

Today’s goals

Talk about three powerful software engineering tools
- unit testing frameworks
- performance profilers (gprof, valgrind’s callgrind)

- code coverage analyzers

CSES333 lec 20 tools // 08-13-12 // perkins

Unit tests

Goal: find errors in a subsystem within the overall system

- a “unit” is a smallest testable piece within the system

>

in C, you might want several unit tests for each function, and
multiple unit tests for each module

in C++, you might want several unit tests for each class and at least
one per method

a unit’s tests will exercise as many boundary cases and execution
paths as possible within the tested unit

CSES333 lec 20 tools // 08-13-12 // perkins

Unit dependencies

All but the lowest-layer units will depend on other units
- e.g., hashtable.c depends on ll.c to work

- e.g., HW2 depends on HW1 to work

If a unit depends on something complex or hard to set

up, an ideal unit test will “stub” or “mock” out the
dependency

- stub: code with the right interface, but no implementation

- mock: code with the right interface, some emulated lbehavior,
and even |logic to help test that the unit is behaving correctly

CSES333 lec 20 tools // 08-13-12 // perkins

Unit tests, diagrammatically

layer
apove

layer

tmbwé Unﬂ; Uﬂﬂ; unng

Why bother to unit test?

unit tests facilitate change

- If you modify a unit, it should still pass all of its unit tests

» if it fails a test, you need to fix the unit or fix the test!
unit tests provide early feedback
- it’s usually too late to test after you’ve finished building
unit tests simplify integration tests
- once your units work, more likely that the overall system works
unit tests serve as de-facto documentation

- read unit tests for a chunk of code to learn how to use that code

CSES333 lec 20 tools // 08-13-12 // perkins

Test-driven development

Add a test, get it to fail, write code to fix the failure
- repeat until you're done with the program

- a useful philosophy, but not gospel

Integrate Deploy Release Steer

CSES333 lec 20 tools // 08-13-12 // perkins

Limits of unit tests

It is very difficult to guarantee that a unit is bug-free

- there’s a combinatorial explosion in the numler of execution
paths through a unit

» It can be tricky to construct inputs that test all paths

» non-determinism confounds this!
Bug-free units do not guarantee bug-free programs

- unit tests can’t help with whole-system problems

» integration bugs, system performance, data consistency
guarantees, etc.

CSES333 lec 20 tools // 08-13-12 // perkins

Unit tests in industry

Hugely important

- many companies require you to check in unit tests for each
and every procedure you write

» Some require you to write unit tests for procedures before you
implement the procedure!

- having good engineering infrastructure helps...
» automatically run all affected unit tests whenever code is checked in
» periodically run regression / integration tests
» identify which code patch broke the system build / patch

» assign ownership to an engineer to remedy the situation

CSES333 lec 20 tools // 08-13-12 // perkins

We’re using Gtest

Somewhat similar to JUnit, but targetted to C/C++

- define a test suite and add individual unit tests to the suite
» a setup function that runs when the suite is initialized
» followed by a bunch of unit test functions that run

» followed by a teardown function that runs when the suite finishes

- within a unit test:;

» write some logic to exercise a function, then write logic that checks
to see whether certain properties you care about are true

» ASSERT routines that test those properties; if an assert fails, report
the failure, and optionally exit the unit test

CSES333 lec 20 tools // 08-13-12 // perkins

see HW1's test ariver Il.c

[mostly white box testing]

see HW1's test _driver _ht.c

[mostly black box testing]

CSES333 lec 20 tools // 08-13-12 // perkins

Performance optimization

Imagine you build a complex system
- but, the system runs too slowly

- how can you figure out why?

As a first step, you need to answer simpler questions
- how much time does my program spend in each function?

- for a given function, how much time does it spend in each of
the functions it calls?

» more generally, what does the call graph of my program look like,
and where do | attribute cost in the graph?

CSE333 lec 20 tools // 08-13-12 // perki

Performance profiler

A tool that helps you answer these questions

- a profiler is a dynamic tool
» measures your program as it runs

- It requires some mechanism for gathering profiling information

» event-based: whenever your program causes some event, record
information about that event

statistical sampling: the OS or hardware periodically interrupts
your program, examining its stack to measure a call path

instrumentation: some tool modifies your program (either source
code or the compiled binary) to inject profiling instructions

CSES333 lec 20 tools // 08-13-12 // perkins

gprof

A hybrid statistical sampling and instrumentation tool

- when you compile and link a program with gcc, you can pass
gcc flags to insert gprof instrumentation

» every time a function is called, it will record caller / callee’s names

» gives you a precise count of how often functions are called

- when you run the program, inserted code will tell the OS to
periodically (~100Hz) send your program a “signal”

» code inserted by gprof examines pre-signal PC to determine which
routine the program was in when it was interrupted

» gives you an approximate, statistical performance profile

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through instrumentation, call counts are gathered

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

through PC sampling, a statistical execution time profile is built

CSES333 lec 20 tools // 08-13-12 // perkins

total execution time is measured: 20 seconds

CSES333 lec 20 tools // 08-13-12 // perkins

function execution times are approximated

total samples: total time:
44+2+1+3 =10 20 seconds

CSES333 lec 20 tools // 08-13-12 // perkins

(3/10) * 20 = 6 seconds

function execution times are approximated

total samples: total time:
44+2+1+3 =10 20 seconds

CSES333 lec 20 tools // 08-13-12 // perkins

function execution times are approximated

total samples: total time:
44+2+1+3 =10 20 seconds

CSES333 lec 20 tools // 08-13-12 // perkins

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

6s

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

A Ca‘ ‘ g rap h function “a” calls function “b”

8s in main() itself

4s in foo() itself
4s in foo(bam())

~

~ . A
2s in bar() itself

2s in bar(bam())

6s in bam() itself

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

A Ca‘ ‘ g rap h function “a” calls function “b”

8s in main() itself

4s in foo() itself
4s in foo(bam())

~

~ . A
2s in bar() itself

2s in bar(bam())

6s in bam() itself

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

A Ca‘ ‘ g rap h function “a” calls function “b”

8s in main() itself
4s in foo() itself
4s in foo(bam())
4s in foo(bar())

~

~ . A
2s in bar() itself

2s in bar(bam())

6s in bam() itself

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

A Ca‘ ‘ g rap h function “a” calls function “b”

8s in main() itself
4s in foo() itself
4s in foo(bam())
4s in foo(bar())

~

~ . A
2s in bar() itself

2s in bar(bam())

6s in bam() itself

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

A Ca‘ ‘ g rap h function “a” calls function “b”

8s in main() itself
12s in main(foo())
4s in foo() itself
4s in foo(bam())
4s in foo(bar())

~

~ . A
2s in bar() itself

2s in bar(bam())

6s in bam() itself

and propagated up the graph

CSES333 lec 20 tools // 08-13-12 // perkins

see countchars.c, countchars_transcript.txt

CSES333 lec 20 tools // 08-13-12 // perkins

Limitations

You need to recompile your program for gprof

- any libraries you use will be opaque to gprof, unless they are
static and also recompiled for gprof

gprof is approximate and coarse-grained
- compiler optimizations can confuse gprof
- program cycles do confuse grof

- gprof assumes cost of a child is independent of its parent

programs can run ~2-3x slower under gprof

CSES333 lec 20 tools // 08-13-12 // perkins

—or more Information

gprof: a Call Graph Execution Profiler, by Susan L.
Graham, Peter B. Kessler, Marshall K. McKusick.

- http://portal.acm.org/citation.cfm?doid=800230.806987

gprof retrospective

- http://portal.acm.org/citation.cfm?doid=989393.989401

CSE333 lec 20 tools // 08-13-12 // perki

http://valgrind.org/docs/valgrind2007 . pdf

Valgrind / callgrind

Valgrind is a heavyweight, dynamic, binary instrumentor

- when you run a program under valgrind, it will:

» just-in-time translate the program’s machine code to a processor-
neutral intermediate representation (IR)

» run a conversion tool (e.g., callgrind) to transform the IR

» callgrind inserts instrumentation instructions to track instruction
counts and simulate memory costs

» translate the IR back to machine code and execute it

- powerful and accurate, but introduces 10-100x slowdown

CSES333 lec 20 tools // 08-13-12 // perkins

see countchars.c, countchars_transcript.txt

CSES333 lec 20 tools // 08-13-12 // perkins

Limitations of profiling

Won't help you realize that your system design is flawed

- should | optimize the sort() used by my program, or redesign
it to avoid needing to sort in the first place?

It can’t help you if there are no obvious bottlenecks

- what do you do if your program spends 2% of its time in each
of 50 different functions?

Might encourage premature or excessive optimization

- at some point, optimization is not worth the engineering cost

CSES333 lec 20 tools // 08-13-12 // perkins

Test quality

How can you tell how good your unit, integration, and
system-level tests are”?

- ideally, prove that your implementation contains no bugs

» impractical: proofs are expensive, often based on a model rather
than the implementation, and require a model for buggy behavior

- what about demonstrating that your implementation performs
correctly for all inputs it’s likely to experience?

» also impractical: # inputs is astronomically large, likely inputs are
hard to predict, and non-determinism means program can take a
large number of different paths given the same input

CSES333 lec 20 tools // 08-13-12 // perkins

A practical metric

Code coverage

- the % of lines of code that your tests exercise
» 100% coverage would be great, but it is rarely achievable

» typical numbers seen from industry are ~70-90%
Code coverage tools work by:
- adding instrumentation to your program to measure coverage
- collecting data as you exercise the instrumented program

- emiting a browsable report

CSES333 lec 20 tools // 08-13-12 // perkins

gcovV

a code coverage tool for the gcc toolchain

- similar to gprof, you pass command-line flags to gcc to turn on
code coverage instrumentation

- gcc adds instructions to object code to count invocations of
different sections of code

- when the program terminates, the counters are written to a file

CSE333 lec 20 tools // 08-13-12 // perki

see I[_transcript.txt

CSES333 lec 20 tools // 08-13-12 // perkins

—xercise 1

Implement quicksort and bubblesort

- use gtest to write unit tests for each

you can copy gtest header files / library from hw

use Google to find documentation on how to use gtest, or mimic
what you see in our existing unit tests

use gcov/lcov to measure your unit test’s code coverage

try to achieve 100% coverage (might not be possiblel!)

CSES333 lec 20 tools // 08-13-12 // perkins

—Xercise 2

Using your exercise 1 code

Implement a program that:
» reads a file containing a list of ints, then sorts the ints with quicksort

» then re-reads the file and re-sorts the ints with bubblesort
use gprof to profile the code
use valgrind’s callgrind to profile the code

understand the difference between the two

CSES333 lec 20 tools // 08-13-12 // perkins

See you on Wednesday!

CSES333 lec 20 tools // 08-13-12 // perkins

