
CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

CSE 333
Lecture 20 -- fork, pthread_create

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Administrivia

Last exercise (ex11) out now - chat pgm w/threads

‣ Due Mon. before class (plenty of time)

‣ Feel free to adapt code from lecture, other exercises

• But be sure to include credits in your code if you do

Sections this week: threading, hw4, ex11

‣ No separate section exercise to hand in

HW4 due next Wednesday

Exam next Friday

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Previously

Let’s implement an echo server - when we receive data from a
client, send it back

Simple implementation: process requests one at a time, in spite
of client interactions blocking for arbitrarily long periods of time

‣ this led to terrible performance

Servers should be concurrent

- process multiple requests simultaneously

‣ issue multiple I/O requests simultaneously

‣ overlap the I/O of one request with computation of another

‣ utilize multiple CPUs / cores

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Today

We’ll go over three versions of the ‘echo’ server

- sequential

- concurrent

‣ processes [fork()]

‣ threads [pthread_create()]

Next time: non-blocking, event driven version

‣ non-blocking I/O [select()]

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Sequential

look at echo_sequential.cc

listen_fd = Listen(port);
while(1) {
 client_fd = accept(listen_fd);
 buf = read(client_fd);
 write(client_fd, buf);
 close(client_fd);
}

pseudocode:

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Whither sequential?

Benefits

- super simple to build

Disadvantages

- incredibly poorly performing

‣ one slow client causes all others to block

‣ poor utilization of network, CPU

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

fork()

Fork is used to create a new process (the “child”) that is
an exact clone of the current process (the “parent”)

- everything is cloned (except threads)

‣ all variables, file descriptors, open sockets, etc.

‣ the heap, the stack, etc.

- primarily used in two patterns

‣ servers: fork a child to handle a connection

‣ shells: fork a child, which then exec’s a new program

pid_t fork(void);

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

fork()

fork() has peculiar semantics

- the parent invokes fork()

- the operating system clones
the parent

- both the parent and the child
return from fork

‣ parent receives child’s pid

‣ child receives a “0” as pid

parent

OS

fork()

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

fork()

fork() has peculiar semantics

- the parent invokes fork()

- the operating system clones
the parent

- both the parent and the child
return from fork

‣ parent receives child’s pid

‣ child receives a “0” as pid

parent

OS

child

clone

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

fork()

fork() has peculiar semantics

- the parent invokes fork()

- the operating system clones
the parent

- both the parent and the child
return from fork

‣ parent receives child’s pid

‣ child receives a “0” as pid

parent

OS

child

child pid 0

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

fork()

fork_example.cc

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Concurrency with processes

The parent process blocks on accept(), waiting for a
new client to connect

- when a new connection arrives, the parent calls fork() to
create a child process

- the child process handles that new connection, and exit()’s
when the connection terminates

Remember that children become “zombies” after death

- option a) parent calls wait() to “reap” children

- option b) use the double-fork trick

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client

connect

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client

server
fork() child

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client server

server

fork() grandchild

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client server

child exit()’s / parent wait()’s

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client server

parent closes its
client connection

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client server

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client server

client

server
fork() child

server
fork() grandchild
exit()

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client server

client server

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client server

client server

client server

client server

client server

client server

client server

client server

client server

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Concurrent with processes

look at echo_concurrent_processes.cc

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Whither concurrent processes?

Benefits

- almost as simple as sequential

‣ in fact, most of the code is identical!

- parallel execution; good CPU, network utilization

Disadvantages

- processes are heavyweight

‣ relatively slow to fork

‣ context switching latency is high

- communication between processes is complicated

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

How slow is fork?

run forklatency.cc

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Implications?

0.31 ms per fork

- maximum of (1000 / 0.31) = 3,500 connections per second per core

- ~0.5 billion connections per day per core

‣ fine for most servers

‣ too slow for a few super-high-traffic front-line web services

• Facebook serves O(750 billion) page views per day

• guess ~1-20 HTTP connections per page

• would need 3,000 -- 60,000 cores just to handle fork(),
i.e., without doing any work for each connection!

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

threads

Threads are like lightweight processes

- like processes, they execute concurrently

‣ multiple threads can run simultaneously on multiple cores/CPUs

- unlike processes, threads cohabit the same address space

‣ the threads within a process see the same heap and globals

• threads can communicate with each other through variables

• but, threads can interfere with each other: need synchronization

‣ each thread has its own stack

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Concurrency with threads

A single process handles all of the connections

- but, a parent thread forks (or dispatches) a new thread to
handle each connection

- the child thread:

‣ handles the new connection

‣ exits when the connection terminates

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

accept()

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

accept()

client
connect

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

accept()

client

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client
pthread_create()

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client

client
pthread_create()

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Graphically

server

client

client

client

client

client

client

shared
data

structures

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Concurrent with threads

look at echo_concurrent_threads.cc

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Whither concurrent threads?
Benefits

- straight-line code

‣ still the case that much of the code is identical!

- parallel execution; good CPU, network utilization

‣ lower overhead than processes

- shared-memory communication is possible

Disadvantages

- synchronization is complicated

- shared fate within a process; one rogue thread can hurt you badly

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

How fast is pthread_create?

run threadlatency.cc

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Implications?

0.036 ms per thread create; ~10x faster than process forking

- maximum of (1000 / 0.036) = ~30,000 connections per second

- ~5 billion connections per day per core

‣ much better

But, writing safe multithreaded code can be serious voodoo

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Exercise 1

Write a simple “proxy” server

- forks a process for each connection

- reads an HTTP request from the client

‣ relays that request to www.cs.washington.edu

- reads the response from www.cs.washington.edu

‣ relays the response to the client, closes the connection

Try visiting your proxy using a web browser :)

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

Exercise 2

Write a client program that:

- loops, doing “requests” in a loop. Each request must:

‣ connect to one of the echo servers from the lecture

‣ do a network exchange with the server

‣ close the connection

- keeps track of the latency (time to do a request) distribution

- keeps track of the throughput (requests / s)

- prints these out

CSE333 lec 18 concurrency.2 // 08-08-12 // perkins

See you on Friday!

