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Administrivia

HW4 out now

- Due Wed. 8/15.  OK to use 2 late days if you have them, 
but...

- Second exam is Friday, 8/17 — last day of class

Exercise n–1 out this afternoon, due before class Mon.

- Connect to web site and grab a file

Lectures next week: processes and threads
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Remember this...

Application protocols

- the format and meaning 
of messages between 
application entities

- e.g., HTTP is an 
application level protocol 
that dictates how web 
browsers and web 
servers communicate

‣ HTTP is implemented on 
top of TCP streams
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Packet encapsulation -- same as before!

And this...

destination
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header HTTP payload (e.g., HTML page)
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Let’s dive down into HTTP

A client establishes one or more TCP connections to a server

- the client sends a request for a web object over a connection, and 
the server replies with the object’s contents

- we have to figure out how let the client and server communicate 
their intentions to each other clearly

- we have to define a protocol 

I’d like “foo.html”

Found it, here it is:  (foo.html)
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HTTP is a “protocol”
Protocol:  the rules governing the exchange of messages, 
and the format of those messages, in a computing system

- what messages can a client exchange with a server?

‣ what do the messages mean?

‣ what are legal replies to a message?

‣ what is the syntax of a message?

- what sequence of messages is legal?

‣ how are errors conveyed?

A protocol is (roughly) the network equivalent of an API
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HTTP

Hypertext transport protocol

- a request / response protocol

‣ a client (web browser) sends a request to a web server

‣ the server processes the request, sends a response

- typically, a request asks the server to retrieve a resource

‣ a resource is an object or document, named by a URI

- a response indicates whether the server succeeded

‣ and, if so, it provides the content of the requested response
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An HTTP request

[METHOD] [request-uri] HTTP/[version]\r\n

[fieldname1]: [fieldvalue1]\r\n

[fieldname2]: [fieldvalue2]\r\n

[...]

[fieldnameN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

let’s use “nc” to see a real request
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HTTP methods

There are three commonly used HTTP methods

- GET:  “please send me the named document”

- POST: “I’d like to submit data to you, such a file upload”

- HEAD: “send me the headers for the named object, but not 
the object.  (I’d like to see if my cached copy is still valid.)”

There are several rarely used methods:

- PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

‣ TRACE:  “if there are any proxies or caches in between me and the 
server, please speak up!”
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HTTP versions

Most browsers and servers speak HTTP/1.1

- “version 1.1 of the HTTP protocol”

‣ http://www.w3.org/Protocols/rfc2616/rfc2616.html

- introduced around 1996 to fix shortcomings of HTTP/1.0

‣ better performance, richer caching features, better support for 
multi-homed servers, and much more

‣ more complicated to implement than HTTP/1.0
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Client headers

The client can provide zero or more request “headers”

- they provide information to the server, or modify how the 
server should process the request

You’ll encounter many in practice

- Host:  the DNS name of the server    [why?]

- User-Agent:  an identifying string naming the browser   [why?]

- Accept:  the content types the client prefers or can accept

- Cookie:  an HTTP cookie previously set by the server
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Example...

GET /foo/bar.html HTTP/1.1
Host: futureproof.cs.washington.edu:5555
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_7; en-us) 
AppleWebKit/533.21.1 (KHTML, like Gecko) Version/5.0.5 Safari/
533.21.1
Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: __utma=59807807.1547453334.1214335349.1301330421.1301339949.
30; __utmz=59807807.1300728257.27.14.utmcsr=google|utmccn=(organic)|
utmcmd=organic|utmctr=csgordon@u.washington.edu; 
__utma=80390417.1521666831.1201286098.1302710464.1302717901.34; 
__utmz=80390417.1301950604.31.15.utmcsr=cs.washington.edu|utmccn=
(referral)|utmcmd=referral|utmcct=/education/courses/cse333/11sp/; 
__qca=P0-1872143622-1294952393928
Connection: keep-alive
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An HTTP response

HTTP/[version] [status code] [reason]\r\n

[fieldname1]: [fieldvalue1]\r\n

[fieldname2]: [fieldvalue2]\r\n

[...]

[fieldnameN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

let’s use “telnet” to see a real response
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Status codes, reason phrase
Code:  a computer-readable outcome of the request

- three digit integer; first digit identifies the response category

‣ 1xx:  some kind of informational message

‣ 2xx:  success of some kind

‣ 3xx:  redirects the client to a different URL

‣ 4xx:  the client’s request contained some error

‣ 5xx:  the server experienced an error

Reason phrase:  human-readable explanation

- e.g., “OK”  or “Moved Temporarily”
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Common status lines
HTTP/1.1 200 OK

- the request succeeded, the requested object is sent

HTTP/1.1 404 Not Found

- the requested object was not found

HTTP/1.1 301 Moved Permanently

- the object exists, but its name has changed

- the new URL is given in the “Location:” header

HTTP/1.1 500 Server Error

- the server had some kind of unexpected error
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Server headers
The server can provide zero or more response “headers”

- they provide information to the client, or modify how the client 
should process the response

You’ll encounter many in practice

- Server:   a string identifying the server software [why?]

- Content-Type:  the type of the requested object

- Content-Length:   size of requested object  [why?]

- Last-Modified:  a date indicating the last time the request 
object was modified   [why?]
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Example

HTTP/1.1 200 OK
Date: Fri, 27 May 2011 17:05:53 GMT
Server: Apache/2.2.19 (Fedora)
Last-Modified: Fri, 27 May 2011 17:04:51 GMT
ETag: "2740640-52-4a444ef9392c0"
Accept-Ranges: bytes
Content-Length: 82
Content-Type: text/html
Content-Language: en
X-Pad: avoid browser bug

<html><body>
<font color="chartreuse" size="18pt">Awesome!!</font>
</body></html>
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Cool HTTP/1.1 features

“Chunked Transfer-Encoding”

- a server might not know how big a response object is

‣ e.g., you’re dynamically generating the content in response to a 
query or other user input

- how do you send Content-Length?

‣ could wait until you’ve finished generating the response, but that’s 
not great in terms of latency

‣ instead, want to start sending response right away

- chunked message body:  response is series of chunks

‣ try with http://www.cs.washington.edu/
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Cool HTTP/1.1 features
Persistent connections

- establishing a TCP connection is costly

‣ multiple network “round trips” just to set up the TCP connection

‣ TCP has a feature called “slow start”;  slowly grows the rate at 
which a TCP connection transmits to avoid overwhelming networks

- a web page consists of multiple objects, and a client probably 
visits several pages on the same server

‣ bad idea: separate TCP connection for each object

‣ better idea:  single TCP connection, multiple requests

‣ try it on www.cs.washington.edu
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See you on Monday!


