
CSE333 lec 18 HTTP // 08-03-12 // perkins

CSE 333
Lecture 16 -- HTTP

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 lec 18 HTTP // 08-03-12 // perkins

Administrivia

HW4 out now

- Due Wed. 8/15. OK to use 2 late days if you have them,
but...

- Second exam is Friday, 8/17 — last day of class

Exercise n–1 out this afternoon, due before class Mon.

- Connect to web site and grab a file

Lectures next week: processes and threads

CSE333 lec 18 HTTP // 08-03-12 // perkins

Remember this...

Application protocols

- the format and meaning
of messages between
application entities

- e.g., HTTP is an
application level protocol
that dictates how web
browsers and web
servers communicate

‣ HTTP is implemented on
top of TCP streams

physicalphysical

data linkdata link

networknetwork

physical

data link

network

transport transport

session session

presentation presentation

application application

CSE333 lec 18 HTTP // 08-03-12 // perkins

Packet encapsulation -- same as before!

And this...

destination
address

source
address data

ethernet
header

ethernet
payload

IP header IP payload

TCP
header TCP payload

HTTP
header HTTP payload (e.g., HTML page)

CSE333 lec 18 HTTP // 08-03-12 // perkins

Let’s dive down into HTTP

A client establishes one or more TCP connections to a server

- the client sends a request for a web object over a connection, and
the server replies with the object’s contents

- we have to figure out how let the client and server communicate
their intentions to each other clearly

- we have to define a protocol

I’d like “foo.html”

Found it, here it is: (foo.html)

CSE333 lec 18 HTTP // 08-03-12 // perkins

HTTP is a “protocol”
Protocol: the rules governing the exchange of messages,
and the format of those messages, in a computing system

- what messages can a client exchange with a server?

‣ what do the messages mean?

‣ what are legal replies to a message?

‣ what is the syntax of a message?

- what sequence of messages is legal?

‣ how are errors conveyed?

A protocol is (roughly) the network equivalent of an API

CSE333 lec 18 HTTP // 08-03-12 // perkins

HTTP

Hypertext transport protocol

- a request / response protocol

‣ a client (web browser) sends a request to a web server

‣ the server processes the request, sends a response

- typically, a request asks the server to retrieve a resource

‣ a resource is an object or document, named by a URI

- a response indicates whether the server succeeded

‣ and, if so, it provides the content of the requested response

CSE333 lec 18 HTTP // 08-03-12 // perkins

An HTTP request

[METHOD] [request-uri] HTTP/[version]\r\n

[fieldname1]: [fieldvalue1]\r\n

[fieldname2]: [fieldvalue2]\r\n

[...]

[fieldnameN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

let’s use “nc” to see a real request

CSE333 lec 18 HTTP // 08-03-12 // perkins

HTTP methods

There are three commonly used HTTP methods

- GET: “please send me the named document”

- POST: “I’d like to submit data to you, such a file upload”

- HEAD: “send me the headers for the named object, but not
the object. (I’d like to see if my cached copy is still valid.)”

There are several rarely used methods:

- PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

‣ TRACE: “if there are any proxies or caches in between me and the
server, please speak up!”

CSE333 lec 18 HTTP // 08-03-12 // perkins

HTTP versions

Most browsers and servers speak HTTP/1.1

- “version 1.1 of the HTTP protocol”

‣ http://www.w3.org/Protocols/rfc2616/rfc2616.html

- introduced around 1996 to fix shortcomings of HTTP/1.0

‣ better performance, richer caching features, better support for
multi-homed servers, and much more

‣ more complicated to implement than HTTP/1.0

CSE333 lec 18 HTTP // 08-03-12 // perkins

Client headers

The client can provide zero or more request “headers”

- they provide information to the server, or modify how the
server should process the request

You’ll encounter many in practice

- Host: the DNS name of the server [why?]

- User-Agent: an identifying string naming the browser [why?]

- Accept: the content types the client prefers or can accept

- Cookie: an HTTP cookie previously set by the server

CSE333 lec 18 HTTP // 08-03-12 // perkins

Example...

GET /foo/bar.html HTTP/1.1
Host: futureproof.cs.washington.edu:5555
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_7; en-us)
AppleWebKit/533.21.1 (KHTML, like Gecko) Version/5.0.5 Safari/
533.21.1
Accept: application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: __utma=59807807.1547453334.1214335349.1301330421.1301339949.
30; __utmz=59807807.1300728257.27.14.utmcsr=google|utmccn=(organic)|
utmcmd=organic|utmctr=csgordon@u.washington.edu;
__utma=80390417.1521666831.1201286098.1302710464.1302717901.34;
__utmz=80390417.1301950604.31.15.utmcsr=cs.washington.edu|utmccn=
(referral)|utmcmd=referral|utmcct=/education/courses/cse333/11sp/;
__qca=P0-1872143622-1294952393928
Connection: keep-alive

CSE333 lec 18 HTTP // 08-03-12 // perkins

An HTTP response

HTTP/[version] [status code] [reason]\r\n

[fieldname1]: [fieldvalue1]\r\n

[fieldname2]: [fieldvalue2]\r\n

[...]

[fieldnameN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

let’s use “telnet” to see a real response

CSE333 lec 18 HTTP // 08-03-12 // perkins

Status codes, reason phrase
Code: a computer-readable outcome of the request

- three digit integer; first digit identifies the response category

‣ 1xx: some kind of informational message

‣ 2xx: success of some kind

‣ 3xx: redirects the client to a different URL

‣ 4xx: the client’s request contained some error

‣ 5xx: the server experienced an error

Reason phrase: human-readable explanation

- e.g., “OK” or “Moved Temporarily”

CSE333 lec 18 HTTP // 08-03-12 // perkins

Common status lines
HTTP/1.1 200 OK

- the request succeeded, the requested object is sent

HTTP/1.1 404 Not Found

- the requested object was not found

HTTP/1.1 301 Moved Permanently

- the object exists, but its name has changed

- the new URL is given in the “Location:” header

HTTP/1.1 500 Server Error

- the server had some kind of unexpected error

CSE333 lec 18 HTTP // 08-03-12 // perkins

Server headers
The server can provide zero or more response “headers”

- they provide information to the client, or modify how the client
should process the response

You’ll encounter many in practice

- Server: a string identifying the server software [why?]

- Content-Type: the type of the requested object

- Content-Length: size of requested object [why?]

- Last-Modified: a date indicating the last time the request
object was modified [why?]

CSE333 lec 18 HTTP // 08-03-12 // perkins

Example

HTTP/1.1 200 OK
Date: Fri, 27 May 2011 17:05:53 GMT
Server: Apache/2.2.19 (Fedora)
Last-Modified: Fri, 27 May 2011 17:04:51 GMT
ETag: "2740640-52-4a444ef9392c0"
Accept-Ranges: bytes
Content-Length: 82
Content-Type: text/html
Content-Language: en
X-Pad: avoid browser bug

<html><body>
Awesome!!
</body></html>

CSE333 lec 18 HTTP // 08-03-12 // perkins

Cool HTTP/1.1 features

“Chunked Transfer-Encoding”

- a server might not know how big a response object is

‣ e.g., you’re dynamically generating the content in response to a
query or other user input

- how do you send Content-Length?

‣ could wait until you’ve finished generating the response, but that’s
not great in terms of latency

‣ instead, want to start sending response right away

- chunked message body: response is series of chunks

‣ try with http://www.cs.washington.edu/

CSE333 lec 18 HTTP // 08-03-12 // perkins

Cool HTTP/1.1 features
Persistent connections

- establishing a TCP connection is costly

‣ multiple network “round trips” just to set up the TCP connection

‣ TCP has a feature called “slow start”; slowly grows the rate at
which a TCP connection transmits to avoid overwhelming networks

- a web page consists of multiple objects, and a client probably
visits several pages on the same server

‣ bad idea: separate TCP connection for each object

‣ better idea: single TCP connection, multiple requests

‣ try it on www.cs.washington.edu

CSE333 lec 18 HTTP // 08-03-12 // perkins

See you on Monday!

