
CSE333 lec 17 network.3 // 07-30-12 // perkins

CSE 333
Lecture 17 -- server sockets

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 lec 17 network.3 // 07-30-12 // perkins

Administrivia

It’s crunch time!

‣ HW3 due tomorrow, but lots of work to do still, so...

‣ Let’s give everyone a 5th late day to work with

• Cutoff for HW3 is still Sat. night (otherwise we’ll be in real trouble
when the quarter ends in a couple of weeks), but...

• Most groups should have 2 late days or more per person to use now

‣ HW4 out this Friday or Saturday, due last Wed. of quarter but with late
days, however 2nd exam is last Friday of the summer qtr.

Office hours today, 3:30, Perkins in CSE 548

Sections tomorrow: optional help session - no new topics

CSE333 lec 17 network.3 // 07-30-12 // perkins

Today

Network programming

- server-side programming

CSE333 lec 17 network.3 // 07-30-12 // perkins

Remember from client sockets

We had a client open a TCP connection to a server using
the sockets API

- there were five steps:

1. figure out the address and port to which to connect

2. create a socket

3. connect the socket to the remote server

4. read and write data using the socket

5. close the socket

CSE333 lec 17 network.3 // 07-30-12 // perkins

Servers

Pretty similar to clients, but with additional steps

- there are seven steps:

1. figure out the address and port on which to listen

2. create a socket

3. bind the socket to the address and port on which to listen

4. indicate that the socket is a listening socket

5. accept a connection from a client

6. read and write to that connection

7. close the connection

CSE333 lec 17 network.3 // 07-30-12 // perkins

Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.

Step 2. Create a socket.

Step 3. Bind the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a listening socket.

CSE333 lec 17 network.3 // 07-30-12 // perkins

Servers

Servers can have multiple IP addresses

- “multihomed”

- usually have at least one externally visible IP address, as well
as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses

‣ by specifying the address “INADDR_ANY” -- a.k.a. 0.0.0.0

- specify that it should listen on a particular address

CSE333 lec 17 network.3 // 07-30-12 // perkins

bind()

The “bind()” system call associates with a socket:

- an address family

‣ AF_INET: IPv4

‣ AF_INET6: IPv6

- a local IP address

‣ the special IP address INADDR_ANY (also known as “0.0.0.0”)
means “all local IP addresses of this host”

- a local port number

CSE333 lec 17 network.3 // 07-30-12 // perkins

listen()

The “listen()” system call tells the OS that the socket is a
listening socket to which clients can connect

- you also tell the OS how many pending connections it should
queue before it starts to refuse new connections

‣ you pick up a pending connection with “accept()”

- when listen returns, remote clients can start connecting to
your listening socket

‣ you need to “accept()” those connections to start using them

CSE333 lec 17 network.3 // 07-30-12 // perkins

Server socket, bind, listen

see server_bind_listen.cc

CSE333 lec 17 network.3 // 07-30-12 // perkins

Accepting a connection from a client

Step 5. Accept a connection from a client.

Step 6. read() and write() to the client.

Step 7. close() the connection.

CSE333 lec 17 network.3 // 07-30-12 // perkins

accept()

The “accept()” system call waits for an incoming
connection, or pulls one off the pending queue

- it returns an active, ready-to-use socket file descriptor
connected to a client

- it returns address information about the peer

‣ use inet_ntop() to get the client’s printable IP address

‣ use getnameinfo() to do a reverse DNS lookup on the client

CSE333 lec 17 network.3 // 07-30-12 // perkins

Server accept, read/write, close

see server_accept_rw_close.cc

CSE333 lec 17 network.3 // 07-30-12 // perkins

Something to note...

Our server code is not concurrent

- single thread of execution

- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the
connection

A crowd of clients is, by nature, concurrent

- while our server is handling the next client, all other clients are
stuck waiting for it

CSE333 lec 17 network.3 // 07-30-12 // perkins

A few tools

Some useful linux commands

‣ dig – dns lookup

‣ nc – netcat swiss army knife (nc -l to listen, nc to send, much else)

‣ telnet – simple remote terminal program

‣ ping – check whether remote host is alive, get timings

‣ traceroute – show hops to ip address

‣ netstat -i – lots of info about network ports

CSE333 lec 17 network.3 // 07-30-12 // perkins

Some resources

Online tutorials (among many...)

- http://beej.us/guide/bgnet/output/html/singlepage/bgnet.html

- http://www.alandix.com/academic/tutorials/tcpip/TCP-IP-complete.pdf

Books

- Unix Network Programming, Stevens et al, 3rd ed, A-W 2004

- Linux Programming Interface, Kerrisk

‣ everything you might want to know about Linux, including sockets

‣ If you want a copy, go to author’s web site http://man7.org/tlpi/ to get
discount code, then order from publisher. Paper and ebook versions.

CSE333 lec 17 network.3 // 07-30-12 // perkins

Exercise 1

Write a program that:

- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ does a DNS lookup on the name

‣ writes back to the client the list of IP addresses associated with the
DNS name

‣ closes the connection to the client

CSE333 lec 17 network.3 // 07-30-12 // perkins

Exercise 2

Write a program that:

- creates a listening socket, accepts connections from clients

‣ reads a line of text from the client

‣ parses the line of text as a DNS name

‣ connects to that DNS name on port 80

‣ writes a valid HTTP request for “/”

• see next slide for what to write

‣ reads the reply, returns the reply to the client

CSE333 lec 17 network.3 // 07-30-12 // perkins

Exercise 2 continued

Here’s a valid HTTP request to server www.foo.com

- note that lines end with ‘\r\n’, not just ‘\n’

GET / HTTP/1.0\r\n
Host: www.foo.com\r\n
Connection: close\r\n
\r\n

CSE333 lec 17 network.3 // 07-30-12 // perkins

See you next time!

