CoE 333

L ecture 17 -- server sockets

Hal Perkins
Department of Computer Science & Engineering
University of Washington

S
-

CSES333 lec 17 networl k.3 // 07-30-12 // perkins

Administrivia

It's crunch timel!
» HW3 due tomorrow, but lots of work to do still, so...
» Let’s give everyone a 5th late day to work with

» Cutoff for HW3 is still Sat. night (otherwise we’ll be in real trouble
when the quarter ends in a couple of weeks), but...

* Most groups should have 2 late days or more per person to use now

» HW4 out this Friday or Saturday, due last Wed. of quarter but with late
days, however 2nd exam is last Friday of the summer qtr.

Office hours today, 3:30, Perkins in CSE 548

Sections tomorrow: optional help session - N0 new topics

CSE333 lec 17 network.3 // 07-30-12 // perkins

Network programming

- server-side programming

CSE333 lec 17 network.3 // 07-30-12 // perkins

Remember from client sockets

We had a client open a TGP connection to a server using
the sockets API

- there were five steps:
1. figure out the address and port to which to connect
2. create a socket
3. connect the socket to the remote server
4., read and write data using the socket

5. close the socket

CSE333 lec 17 network.3 // 07-30-12 // perkins

Servers

Pretty similar to clients, but with additional steps

- there are seven steps:
1. figure out the address and port on which to listen
. create a socket
. bind the socket to the address and port on which to listen
. Indicate that the socket is a listening socket
. accept a connection from a client
. read and write to that connection

. close the connection

CSE333 lec 17 network.3 // 07-30-12 // perkins

Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.

Step 2. Create a socket.
Step 3. Bind the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a listening socket.

CSE333 lec 17 network.3 // 07-30-12 // perkins

Servers

Servers can have multiple IP addresses
- “multihomed”

- usually have at least one externally visible |IP address, as well
as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses

» by specifying the address “INADDR_ANY” -- a.k.a. 0.0.0.0

- specify that it should listen on a particular address

CSE333 lec 17 network.3 // 07-30-12 // perkins

obind()

The “bind()” system call associates with a socket:

- an address family
» AF_INET: [IPv4
» AF_INETG: IPv6

- alocal IP address

» the special IP address INADDR_ANY (also known as “0.0.0.0%)
means “all local IP addresses of this host”

- alocal port number

CSE333 lec 17 network.3 // 07-30-12 // perkins

isten()

The “listen()” system call tells the OS that the socket is a
listening socket to which clients can connect

- you also tell the OS how many pending connections it should
gueue before it starts to refuse new connections

» you pick up a pending connection with “accept()

- when listen returns, remote clients can start connecting to
your listening socket

» you need to “accept()” those connections to start using them

CSE333 lec 17 network.3 // 07-30-12 // perkins

Server socket, bind, listen

see server _bind_listen.cc

Accepting a connection from a client

Step 5. Accept a connection from a client.

Step 6. read() and write() to the client.

Step 7. close() the connection.

CSE333 lec 17 network.3 // 07-30-12 // perkins

accept()

The “accept()” system call waits for an incoming
connection, or pulls one off the pending queue

- [t returns an active, ready-to-use socket file descriptor
connected to a client

- |t returns address information about the peer
» use inet_ntop() to get the client’s printable IP address

» use getnameinfo() to do a reverse DNS lookup on the client

CSE333 lec 17 network.3 // 07-30-12 // perkins

Server accept, read/write, close

see server_accept_rw_close.cc

Something to note...

Our server code is not concurrent
- single thread of execution
- the thread blocks waiting for the next connection

- the thread blocks waiting for the next message from the
connection

A crowd of clients is, by nature, concurrent

- while our server is handling the next client, all other clients are
stuck waiting for it

CSE333 lec 17 network.3 // 07-30-12 // perkins

A few tools

Some useful linux commands

dig — dns lookup

nc — netcat swiss army knife (nc -1 to listen, nc to send, much else)
telnet — simple remote terminal program

ping — check whether remote host is alive, get timings

traceroute — show hops to ip address

netstat -i — lots of info about network ports

CSE333 lec 17 network.3 // 07-30-12 // perkins

Some resources

Online tutorials (among many...)

- http://beej.us/guide/bgnet/output/html/singlepage/bgnet.html

- http://www.alandix.com/academic/tutorials/tcpip/TCP-IP-complete.pdf

Books

- Unix Network Programming, Stevens et al, 3rd ed, A-W 2004
- Linux Programming Interface, Kerrisk

» everything you might want to know about Linux, including sockets

» If you want a copy, go to author’s web site http://man7.org/tlpi/ to get
discount code, then order from publisher. Paper and ebook versions.

CSE333 lec 17 network.3 // 07-30-12 // perkins

—xercise 1

Write a program that:

- creates a listening socket, accepts connections from clients
» reads a line of text from the client
parses the line of text as a DNS name
does a DNS lookup on the name

writes back to the client the list of IP addresses associated with the
DNS name

closes the connection to the client

CSE333 lec 17 network.3 // 07-30-12 // perkins

—Xercise 2

Write a program that:
- creates a listening socket, accepts connections from clients
» reads a line of text from the client
parses the line of text as a DNS name
connects to that DNS name on port 80
writes a valid HT TP request for “/”
e see next slide for what to write

reads the reply, returns the reply to the client

CSE333 lec 17 network.3 // 07-30-12 // perkins

—Xxercise 2 continued

Here’s a valid HT TP request to server www.foo.com

- note that lines end with \r\n’, not just \n’

GET / HTTP/1.0\r\n
Host: www.foo.com\r\n
Connection: close\r\n

\r\n

CSE333 lec 17 network.3 // 07-30-12 // perkins

See you next time!

CSE333 lec 17 network.3 // 07-30-12 // perkins

