
CSE333 lec1 intro // 06-18-12 // perkins

CSE 333
Lecture 1 - Systems programming

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 lec1 intro // 06-18-12 // perkins

Welcome!

Today’s goals:

- introductions

- big picture

- course syllabus

- setting some expectations

CSE333 lec1 intro // 06-18-12 // perkins

Us
Hal Perkins

Cortney Corbin

Soumya Vasisht

CSE333 lec1 intro // 06-18-12 // perkins

Welcome!

Today’s goals:

- introductions

- big picture

- course syllabus

- setting some expectations

CSE333 lec1 intro // 06-18-12 // perkins

Course map: 100,000 foot view

hardware

operating system
HW/SW interface
(x86 + devices)

CPU memory storage network
GPU clock audio radio peripherals

OS / app interface
(system calls)

C standard library
(glibc)

C application

C++ STL / boost /
standard library

C++ application

JRE

Java
application

CSE333 lec1 intro // 06-18-12 // perkins

Software “System”

A platform, application, or other structure that:

- is composed of multiple modules

‣ the system’s architecture defines the interfaces of and
relationships between the modules

- often is complex

‣ in terms of its implementation, performance, management

- hopefully has requirements

‣ performance, security, fault tolerance, data consistency

CSE333 lec1 intro // 06-18-12 // perkins

A layered view

layer below

your system

client

layer below

client client

• • •

understands
and relies on
layers below

provides
service to

layers above

CSE333 lec1 intro // 06-18-12 // perkins

A layered view

layer below

your system

client

layer below

client client

• • •

constrained
by performance,

footprint, behavior
of the layers below

more useful,
portable, reliable

abstractions

CSE333 lec1 intro // 06-18-12 // perkins

Example system

Operating system

- a software layer that abstracts away the messy details of
hardware into a useful, portable, powerful interface

- modules:

‣ file system, virtual memory system, network stack,
protection system, scheduling subsystem, ...

‣ each of these is a major system of its own!

- design and implementation has tons of engineering tradeoffs

‣ e.g., speed vs. (portability, maintainability, simplicity)

CSE333 lec1 intro // 06-18-12 // perkins

Another example system

Web server framework

- a software layer that abstracts away the messy details of OSs,
HTTP protocols, and storage systems to simplify building
powerful, scalable Web services

- modules:

‣ HTTP server, HTML template system, database storage,
user authentication system, ...

- also has many, many tradeoffs

‣ programmer convenience vs. performance

‣ simplicity vs. extensibility

CSE333 lec1 intro // 06-18-12 // perkins

Systems programming

The programming skills, engineering discipline, and
knowledge you need to build a system

- programming: C / C++

- discipline: testing, debugging, performance analysis

- knowledge: long list of interesting topics

‣ concurrency, OS interfaces and semantics, techniques for
consistent data management, algorithms, distributed systems, ...

‣ most important: deep understanding of the “layer below”

• quiz: how many copies of your data are made when you use the
read() system call to read from a file?

CSE333 lec1 intro // 06-18-12 // perkins

Programming languages

Assembly language / machine code

- (approximately) directly executed by hardware

- tied to a specific machine architecture, not portable

- no notion of structure, few programmer conveniences

- possible to write really, really fast code

- necessary for a few critical parts of the operating system

- extraordinarily painful and fragile

CSE333 lec1 intro // 06-18-12 // perkins

Programming languages

Structured but low-level languages (C, C++)

- hides some architectural details, is mostly portable, has a few
useful abstractions like types, arrays, procedures, objects

- permits (forces?) programmer to handle low-level details like
memory management, locks, threads

- low-level enough to be fast and to give the programmer
control over resources

‣ double-edged sword: low-level enough to be complex, error-prone

‣ a useful shield: engineering discipline

CSE333 lec1 intro // 06-18-12 // perkins

Programming languages

High-level languages (Python, Ruby, JavaScript, ...)

- focus on productivity and usability over performance

- powerful abstractions shield you from low-level gritty details
(bounded arrays, garbage collection, rich libraries, ...)

- usually interpreted, translated, or compiled via an intermediate
representation

- slower (by 1.2x-10x), less control

CSE333 lec1 intro // 06-18-12 // perkins

Discipline

Cultivate good habits, encourage clean code

- coding style conventions

- unit testing, code coverage testing, regression testing

- documentation (code comments, design docs)

- code reviews

Will take you a lifetime to learn

- but oh-so-important, especially for systems code

‣ avoid write-once, read-never code

CSE333 lec1 intro // 06-18-12 // perkins

Knowledge

Tools

- gcc, gdb, g++, objdump, nm, gcov/lcov, valgrind, IDEs, race
detectors, model checkers, ...

Lower-level systems

- UNIX system call API, relational databases, map/reduce,
Django, jQuery, ...

Systems foundations

- transactions, two-phase commit, consensus, RPC,
virtualization, cache coherence, applied crypto, ...

CSE333 lec1 intro // 06-18-12 // perkins

Welcome!

Today’s goals:

- introductions

- big picture

- course syllabus

- setting some expectations

CSE333 lec1 intro // 06-18-12 // perkins

C / C++ programming

Major focus of this course

- ~2 weeks of diving deeper into C

‣ review some material from 351 and go deeper

- ~4 weeks of a (sane subset) of C++

- exposure to programming tools

‣ unit testing frameworks, performance profiling and analysis, revision
control systems

CSE333 lec1 intro // 06-18-12 // perkins

Interacting with UNIX and
standard libraries

The “layers below” we will be relying on

- learn C’s standard library and some of C++’s STL

‣ including memory management (malloc/new, free/delete)

‣ we’ll look at some of C++11 and boost

- learn aspects of the UNIX system call API

‣ I/O: storage, networking

‣ process management, signals

CSE333 lec1 intro // 06-18-12 // perkins

Potential additional topics

Concurrency

- threads

- perhaps asynchronous I/O and event-driven programming

Security

- will be mindful of security topics as they come up

- e.g., how to avoid buffer overflow issues in C/C++

CSE333 lec1 intro // 06-18-12 // perkins

Welcome!

Today’s goals:

- introductions

- big picture

- course syllabus

- setting some expectations

CSE333 lec1 intro // 06-18-12 // perkins

What you will be doing
Attending lectures and sections

- lecture: ~25 of them, MWF here

- sections: ~9 of then, Thu 9:40, also here

- Take notes!!! Don’t expect everything to be on the web

Doing programming projects

- ~4 of them, successively building on each other

- includes C, C++; files, networking

Doing programming exercises

- one per lecture, due before the next lecture begins

- coarse-grained grading (0, 1, 2 or 3)

CSE333 lec1 intro // 06-18-12 // perkins

Project Deadlines
Goal: keep everyone on schedule, consistent at 11 pm,
allow a little slack - but how?

Option 1:

- 10% deduction each day late, max 2 days per assignment

- 2 free “late days” during the quarter

Option 2:

- No late penalties, assignments due at deadline

- 4 free “late days” for the quarter, no more than 2 per assignment

Which should we use? Alternatives?

No late days for exercises in any case - due 9 am before lecture

CSE333 lec1 intro // 06-18-12 // perkins

Requirements

CSE351 is a prerequisite

- I assume you have just a little exposure to C

- I assume you know what a linked list, tree, hash table is

You need access to a CSE linux environment

- undergraduate labs, ssh into attu.cs, use CSE home VMs

CSE333 lec1 intro // 06-18-12 // perkins

Textbooks

Recommended (strongly):

- Computer Systems, A Programmer’s Perspective (“CSAAP”)

‣ [2nd Ed]. CSE351 textbook; do you already have it?

- C: A Reference Manual (“CARM”) [5th Ed]

- C++ Primer (“C++P”) [5th Ed]

Optional (but cool):

- Effective C++ [3rd Ed]

We’ll also take advantage of online resources...

CSE333 lec1 intro // 06-18-12 // perkins

Communications

Discussion board (gopost)

- Best for most things - everyone benefits from exchanges

- Hint: post something, then unread postings will be tagged

cse333-staff@cs

- Use for communications that don’t belong on the board

Perspective: Real software, real APIs, real bugs

- We’ll try to help as best we can, but mostly expect ideas for
what to try, where to look. Debugging is your job.

CSE333 lec1 intro // 06-18-12 // perkins

Collaboration

Some of the projects will be individual, some in teams

- assume individual unless explicitly stated otherwise

Cross-team collaboration is useful and expected

- help other teams with programming fundamentals, concepts

Plagiarism and cheating is verboten

- helping other teams with assignments, debugging their code

- relying on help without attributing in your writeups

CSE333 lec1 intro // 06-18-12 // perkins

For Wednesday

Homework #0 is due (a short survey):

- https://catalyst.uw.edu/webq/survey/perkins/171716

Exercise 0 is due

- http://www.cs.washington.edu/education/courses/cse333/12su/exercises/
ex0.html

CSE333 lec1 intro // 06-18-12 // perkins

See you on Wednesday!

