
CSE 333 Section 3
Thursday 12 April 2012

Thursday, April 12, 12

Goals for Today

1. Overview IP addresses

2. Look at the IP address structures in C/C++

3. Overview DNS

4. Talk about how to use DNS to translate IP addresses

5. Write your own (short!) program to do this translation

6. Go over the solution

Thursday, April 12, 12

Networks from 10,000ft

Internet

clients servers

Thursday, April 12, 12

Internet

clients servers

• Clients talk to Servers

• Servers respond to Clients

... But how do they know how to reach each other?

... And how do we know if a response is for Firefox or Mail?

Thursday, April 12, 12

Network addresses

For IPv4, an IP address is a 4-byte tuple
- e.g., 128.95.4.1 (80:5f:04:01 in hex)

For IPv6, an IP address is a 16-byte tuple
- e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33

‣ 2d01:0db8:f188::1f33 in shorthand

Thursday, April 12, 12

There are lots of structs coming up...

... we’ll walk through them one at a time.

Thursday, April 12, 12

IPv4 address structures
// Port numbers and addresses are in *network order*.

// A mostly-protocol-independent address structure.
struct sockaddr {
 short int sa_family; // Address family; AF_INET, AF_INET6
 char sa_data[14]; // 14 bytes of protocol address
};

// An IPv4 specific address structure.
struct sockaddr_in {
 short int sin_family; // Address family, AF_INET == IPv4
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; // Same size as struct sockaddr
};

struct in_addr {
 uint32_t s_addr; // IPv4 address
};

Thursday, April 12, 12

IPv6 address structures
// A structure big enough to hold either IPv4 or IPv6 structures.
struct sockaddr_storage {
 sa_family_t ss_family; // address family

 // a bunch of padding; safe to ignore it.
 char __ss_pad1[_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_SS_PAD2SIZE];
};

// An IPv6 specific address structure.
struct sockaddr_in6 {
 u_int16_t sin6_family; // address family, AF_INET6
 u_int16_t sin6_port; // Port number
 u_int32_t sin6_flowinfo; // IPv6 flow information
 struct in6_addr sin6_addr; // IPv6 address
 u_int32_t sin6_scope_id; // Scope ID
};

struct in6_addr {
 unsigned char s6_addr[16]; // IPv6 address
};

Thursday, April 12, 12

Generating these structures
Often you have a string representation of an address
- how do you generate one of the address structures?

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
 struct sockaddr_in sa; // IPv4
 struct sockaddr_in6 sa6; // IPv6

 // IPv4 string to sockaddr_in.
 inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 return EXIT_SUCCESS;
}

Thursday, April 12, 12

Generating these structures
How about going in reverse?

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
 struct sockaddr_in6 sa6; // IPv6
 char astring[INET6_ADDRSTRLEN]; // IPv6

 // IPv6 string to sockaddr_in6.
 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 // sockaddr_in6 to IPv6 string.
 inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
 printf(“%s\n”, astring);

 return EXIT_SUCCESS;
}

Thursday, April 12, 12

DNS
People tend to use DNS names, not IP addresses
- the sockets API lets you convert between the two

- it’s a complicated process, though:
‣ a given DNS name can have many IP addresses

‣ many different DNS names can map to the same IP address

• an IP address will reverse map into at most one DNS names, and
maybe none

‣ a DNS lookup may require interacting with many DNS servers

You can use the “dig” Linux program to explore DNS
- “man dig”

Thursday, April 12, 12

DNS hierarchy

A B C M• • •

“.” -- root name servers
198.41.0.4 (a.root-servers.net)
192.228.79.201 (b.root-servers.net)

202.12.27.33 (m.root-servers.net)
• • •

com xxx uk org• • • “.com.” -- top-level domain server

google yahoo hulu gribble apache fsf• • •• • •

www mail docs finance• • • seattle www • • •

Thursday, April 12, 12

Resolving DNS names

The POSIX way is to use getaddrinfo()
- a pretty complicated system call; the basic idea...

‣ set up a “hints” structure with constraints you want respected

• e.g., IPv6, IPv4, or either

‣ tell getaddrinfo() which host and port you want resolved

• host: a string representation; DNS name or IP address

‣ getaddrinfo() gives you a list of results packet in an “addrinfo” struct

‣ free the addrinfo structure using freeaddrinfo()

Thursday, April 12, 12

getaddrinfo() and structures
int getaddrinfo(const char *hostname, // hostname to look up
 const char *servname, // service name
 const struct addrinfo *hints, //desired output type
 struct addrinfo **res); //result structure

// Hints and results take the same form. Hints are optional.
struct addrinfo {
 int ai_flags; // Indicate options to the function
 int ai_family; // AF_INET, AF_INET6, or AF_UNSPEC
 int ai_socktype; // Socket type, (use SOCK_STREAM)
 int ai_protocol; // Protocol type
 size_t ai_addrlen; // INET_ADDRSTRLEN, INET6_ADDRSTRLEN
 char *ai_cananname;// canonical name for the host
 struct sockaddr *ai_addr; // Address (input to inet_ntop)
 struct addrinfo *ai_next; // Next element (It’s a linked list)
};

// Converts an address from network format to presentation format
const char *inet_ntop(int af, // family (see above)
 const void * restrict src, // sockaddr
 char * restrict dest, // return buffer
 socklen_t size); // length of buffer

Thursday, April 12, 12

DNS lookup program
• Take in an argument to translate to ip (e.g. “google.com”)

• If you don’t want to take in an argument look up my CSE machine:

•“cerise.cs.washington.edu” ---> 128.208.6.34

• Setup/initialize your hints addrinfo struct (remember to free it later!)

• zero out everything except ai_family and ai_socktype

• Use getaddrinfo() to ask DNS for the IP

• you can use gai_strerror() to translate error codes

• Cycle through returned addresses, printing results

• use inet_ntop() to get a nice string out

• you need to distinguish between IPv4 and IPv6
Thursday, April 12, 12

Don’t worry about getting it perfect, we just want you

to work with the structures and be familiar with them.

Thursday, April 12, 12

Let’s go over the solution...

Thursday, April 12, 12

