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Goals for Today

1. Overview IP addresses 

2. Look at the IP address structures in C/C++

3. Overview DNS

4. Talk about how to use DNS to translate IP addresses

5. Write your own (short!) program to do this translation

6. Go over the solution
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Networks from 10,000ft

Internet

clients servers
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Internet

clients servers

• Clients talk to Servers

• Servers respond to Clients

... But how do they know how to reach each other?

... And how do we know if a response is for Firefox or Mail?
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Network addresses

For IPv4, an IP address is a 4-byte tuple
- e.g., 128.95.4.1  (80:5f:04:01 in hex)

For IPv6, an IP address is a 16-byte tuple
- e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33

‣ 2d01:0db8:f188::1f33 in shorthand
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There are lots of structs coming up... 

... we’ll walk through them one at a time.
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IPv4 address structures
// Port numbers and addresses are in *network order*.

// A mostly-protocol-independent address structure.
struct sockaddr {
    short int     sa_family;    // Address family; AF_INET, AF_INET6
    char          sa_data[14];  // 14 bytes of protocol address
};

// An IPv4 specific address structure.
struct sockaddr_in {
    short int          sin_family;  // Address family, AF_INET == IPv4
    unsigned short int sin_port;    // Port number
    struct in_addr     sin_addr;    // Internet address
    unsigned char      sin_zero[8]; // Same size as struct sockaddr
};

struct in_addr {
    uint32_t s_addr;  // IPv4 address
};
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IPv6 address structures
// A structure big enough to hold either IPv4 or IPv6 structures.
struct sockaddr_storage {
    sa_family_t  ss_family;     // address family

    // a bunch of padding; safe to ignore it.
    char      __ss_pad1[_SS_PAD1SIZE];
    int64_t   __ss_align;
    char      __ss_pad2[_SS_PAD2SIZE];
};

// An IPv6 specific address structure.
struct sockaddr_in6 {
    u_int16_t       sin6_family;   // address family, AF_INET6
    u_int16_t       sin6_port;     // Port number
    u_int32_t       sin6_flowinfo; // IPv6 flow information
    struct in6_addr sin6_addr;     // IPv6 address
    u_int32_t       sin6_scope_id; // Scope ID
};

struct in6_addr {
    unsigned char   s6_addr[16];   // IPv6 address
};
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Generating these structures
Often you have a string representation of an address
- how do you generate one of the address structures?

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
  struct sockaddr_in sa; // IPv4
  struct sockaddr_in6 sa6; // IPv6

  // IPv4 string to sockaddr_in.
  inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

  // IPv6 string to sockaddr_in6.
  inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

  return EXIT_SUCCESS;
}
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Generating these structures
How about going in reverse?

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
  struct sockaddr_in6 sa6;         // IPv6
  char astring[INET6_ADDRSTRLEN];  // IPv6

  // IPv6 string to sockaddr_in6.
  inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

  // sockaddr_in6 to IPv6 string.
  inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
  printf(“%s\n”, astring);

  return EXIT_SUCCESS;
}
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DNS
People tend to use DNS names, not IP addresses
- the sockets API lets you convert between the two

- it’s a complicated process, though:
‣ a given DNS name can have many IP addresses

‣ many different DNS names can map to the same IP address

• an IP address will reverse map into at most one DNS names, and 
maybe none

‣ a DNS lookup may require interacting with many DNS servers

You can use the “dig” Linux program to explore DNS
- “man dig”
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DNS hierarchy

A B C M• • •

“.” --  root name servers
198.41.0.4 (a.root-servers.net)
192.228.79.201 (b.root-servers.net)

202.12.27.33 (m.root-servers.net)
• • •

com xxx uk org• • • “.com.” --  top-level domain server

google yahoo hulu gribble apache fsf• • •• • •

www mail docs finance• • • seattle www • • •
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Resolving DNS names

The POSIX way is to use getaddrinfo( )
- a pretty complicated system call; the basic idea...

‣ set up a “hints” structure with constraints you want respected

• e.g., IPv6, IPv4, or either

‣ tell getaddrinfo( ) which host and port you want resolved

• host: a string representation; DNS name or IP address

‣ getaddrinfo( ) gives you a list of results packet in an “addrinfo” struct

‣ free the addrinfo structure using freeaddrinfo( )
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getaddrinfo() and structures
int getaddrinfo(const char *hostname,         // hostname to look up
                const char *servname,         // service name
                const struct addrinfo *hints, //desired output type
                struct addrinfo **res);       //result structure

// Hints and results take the same form. Hints are optional.
struct addrinfo {
    int             ai_flags;     // Indicate options to the function
    int             ai_family;    // AF_INET, AF_INET6, or AF_UNSPEC
    int             ai_socktype;  // Socket type, (use SOCK_STREAM)
    int             ai_protocol;  // Protocol type
    size_t          ai_addrlen;   // INET_ADDRSTRLEN, INET6_ADDRSTRLEN
    char            *ai_cananname;// canonical name for the host
    struct sockaddr *ai_addr;     // Address (input to inet_ntop)
    struct addrinfo *ai_next;     // Next element (It’s a linked list)
};

// Converts an address from network format to presentation format
const char *inet_ntop(int af,                    // family (see above)
                      const void * restrict src, // sockaddr 
                      char * restrict dest,      // return buffer
                      socklen_t size);           // length of buffer

Thursday, April 12, 12



DNS lookup program
• Take in an argument to translate to ip (e.g. “google.com”)

• If you don’t want to take in an argument look up my CSE machine: 

•“cerise.cs.washington.edu”  ---> 128.208.6.34

• Setup/initialize your hints addrinfo struct (remember to free it later!)

• zero out everything except ai_family and ai_socktype

• Use getaddrinfo() to ask DNS for the IP

• you can use gai_strerror() to translate error codes

• Cycle through returned addresses, printing results

• use inet_ntop() to get a nice string out

• you need to distinguish between IPv4 and IPv6
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Don’t worry about getting it perfect, we just want you

to work with the structures and be familiar with them.
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Let’s go over the solution...
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