
CSE333 lec 2 C.1 // 03-28-12 // gribble

CSE 333
Lecture 2 - gentle re-introduction to C
Steve Gribble
Department of Computer Science & Engineering
University of Washington

CSE333 lec 2 C.1 // 03-28-12 // gribble

HW0 results

question T F

I have a laptop I can bring to class / section 90% 10%

languages I have used: C (87%) C++ (32%) x86 (56%) ARM (0%)
Java (100%) Python (57%) Perl (4%) Ruby (38%)

JavaScript (59%) Go (0%) Haskell (3%) Klingon (3%)

languages I have used: C (87%) C++ (32%) x86 (56%) ARM (0%)
Java (100%) Python (57%) Perl (4%) Ruby (38%)

JavaScript (59%) Go (0%) Haskell (3%) Klingon (3%)

languages I have used: C (87%) C++ (32%) x86 (56%) ARM (0%)
Java (100%) Python (57%) Perl (4%) Ruby (38%)

JavaScript (59%) Go (0%) Haskell (3%) Klingon (3%)
languages I’m awesome at: C (4%) C++ (1%) x86 (1%)

ARM (0%) Java (100%) Python (21%) Perl (0%) Ruby (3%)
JavaScript (15%) Go (0%) Haskell (1%) Romulan (3%)

languages I’m awesome at: C (4%) C++ (1%) x86 (1%)
ARM (0%) Java (100%) Python (21%) Perl (0%) Ruby (3%)

JavaScript (15%) Go (0%) Haskell (1%) Romulan (3%)

languages I’m awesome at: C (4%) C++ (1%) x86 (1%)
ARM (0%) Java (100%) Python (21%) Perl (0%) Ruby (3%)

JavaScript (15%) Go (0%) Haskell (1%) Romulan (3%)
Most code I have written as part of a product is: 1-100 lines (1%)

100-1000 lines (38%) 1000-10000 lines (55%) 10000+ (8.5%)
Most code I have written as part of a product is: 1-100 lines (1%)

100-1000 lines (38%) 1000-10000 lines (55%) 10000+ (8.5%)
Most code I have written as part of a product is: 1-100 lines (1%)

100-1000 lines (38%) 1000-10000 lines (55%) 10000+ (8.5%)

CSE333 lec 2 C.1 // 03-28-12 // gribble

HW0 results

question T F

I took 351 from Mark Oskin last quarter 21% 79%

I have debugged pointer errors in my code 76% 24%

I have debugged memory leaks in my code 30% 70%

I have written network code 21% 79%

I have used the file system from my code 52% 48%

CSE333 lec 2 C.1 // 03-28-12 // gribble

HW0 results
question T F

I know what a system call is; I’ve used one 27% 73%

I can write a Makefile 41% 59%

I’ve used a revision control system 91% 9%

0"

2"

4"

6"

8"

10"

12"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

CO
U
N
T&pick a number

between 0 and 9

CSE333 lec 2 C.1 // 03-28-12 // gribble

HW 0 results

Factor a ridiculously large number:

“Do not know, and don't have enough time to find out”

“2, 311, 2004800585918905910644911527, why would
you ask such a question?”

CSE333 lec 2 C.1 // 03-28-12 // gribble

Today’s goals:
- overview of the C material you learned from cse351

Next two weeks’ goals:
- dive in deep into more advanced C topics

- start writing some C code

- introduce you to interacting with the OS

CSE333 lec 2 C.1 // 03-28-12 // gribble

Attribution

The slides I’ll be using are a mixture of:
- my own material

- slides from other UW CSE courses (CSE303, CSE351; thanks
Magda Balazinska, Marty Stepp, John Zahorjan, Hal Perkins,
Gaetano Borriello and others!!)

- material from other universities’ courses (particularly CMU’s
15-213 and some Harvard courses; thanks Randy Bryant,
Dave O’Hallaron, Matt Welsh, and others!!)

All mistakes are mine. (No, really.)

CSE333 lec 2 C.1 // 03-28-12 // gribble

C
Created in 1972 by Dennis Ritchie
- designed for creating system software

- portable across machine architectures

- most recently updated in 1999 (C99)

Characteristics
- low-level, smaller standard library than Java

- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

This book was typeset (pic|tbl|
eqn|troff -ms) using an Autologic

APS-5 phototypesetter and a DEC
VAX 8550 running the 9th Edition of

the UNIX operating system.

CSE333 lec 2 C.1 // 03-28-12 // gribble

Mindset of C
“The PDP-11/45 on which our UNIX installation is
implemented is a:
- 16-bit word (8-bit byte) computer with

‣ 144K bytes of core memory; UNIX occupies 42K bytes

‣ a 1M byte fixed-head disk

‣ a moving-head disk with 40M byte disk packs

- The greater part of UNIX software is written in C.”

Dennis M. Ritchie and Ken Thompson
Bell Laboratories

1974

CSE333 lec 2 C.1 // 03-28-12 // gribble

C workflow

Editor
(emacs, vi)

or IDE
(eclipse)

foo.c

source
files

(.c, .h)

foo.h

bar.c

edit
barlink

link

executable

execute,
debug,
profile,

...

libZ.a

statically linked
libraries

libc.so

shared
libraries

load bar

process

linkbar.o

object
files
(.o)

compile
foo.o

CSE333 lec 2 C.1 // 03-28-12 // gribble

From C to machine code
int dosum(int i, int j) {
 return i+j;
}

C source file
(dosum.c)

C compiler (gcc -S)

dosum:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
popl %ebp
ret

assembly source file
(dosum.s)

assembler (as)

80483b0: 55
89 e5 8b 45
0c 03 45 08

5d c3

machine code
(dosum.o)

CSE333 lec 2 C.1 // 03-28-12 // gribble

Skipping assembly language
Most C compilers generate .o files (machine code) directly
- i.e., without actually saving the readable .s assembly file

dosum.c gcc -S dosum.s as dosum.o

gcc -c

CSE333 lec 2 C.1 // 03-28-12 // gribble

Multi-file C programs

int dosum(int i, int j) {
 return i+j;
}

C source file
(dosum.c)

#include <stdio.h>

int dosum(int i, int j);

int main(int argc, char **argv) {
 printf("%d\n", dosum(1,2));
 return 0;
}

C source file
(sumnum.c)

dosum() is
implemented
in sumnum.c

this “prototype” of
dosum() tells gcc
about the types of

dosum’s arguments
and its return value

CSE333 lec 2 C.1 // 03-28-12 // gribble

#include <stdio.h>

int dosum(int i, int j);

int main(int argc, char **argv) {
 printf("%d\n", dosum(1,2));
 return 0;
}

C source file
(sumnum.c)

Multi-file C programs

where is the
implementation

of printf?

why do we need
this #include?

int dosum(int i, int j) {
 return i+j;
}

C source file
(dosum.c)

CSE333 lec 2 C.1 // 03-28-12 // gribble

Compiling multi-file programs
Multiple object files are linked to produce an executable
- standard libraries (libc, crt1, ...) are usually also linked in

- a library is just a pre-assembled collection of .o files

dosum.c dosum.ogcc -c

sumnum.c sumnum.ogcc -c

ld
(or gcc) sumnum

libraries
(e.g., libc)

CSE333 lec 2 C.1 // 03-28-12 // gribble

Object files
sumnum.o, dosum.o are object files
- each contains machine code produced by the compiler

- each might contain references to external symbols
‣ variables and functions not defined in the associated .c file

‣ e.g., sumnum.o contains code that relies on printf() and dosum(),
but these are defined in libc.a and dosum.o, respectively

- linking resolves these external symbols while smooshing
together object files and libraries

CSE333 lec 2 C.1 // 03-28-12 // gribble

Let’s dive into C itself
Things that are the same as Java
- syntax for statements, control structures, function calls

- types: int, double, char, long, float

- type-casting syntax: float x = (float) 5 / 3;

- expressions, operators, precedence
+ - * / % ++ -- = += -= *= /= %= < <= == != > >= && || !

- scope (local scope is within a set of { } braces)

- comments: /* comment */ 	 // comment

CSE333 lec 2 C.1 // 03-28-12 // gribble

Primitive types in C
integer types
- char, int

floating point
- float, double

modifiers
- short [int]

- long [int, double]

- signed [char, int]

- unsigned [char, int]

type bytes
(32 bit)

bytes
(64 bit) 32 bit range printf

char 1 1 [0, 255] %c

short int 2 2 [-32768,32767] %hd

unsigned short int 2 2 [0, 65535] %hu

int 4 4 [-214748648,
2147483647] %d

unsigned int 4 4 [0, 4294967295] %u

long int 4 8 [-2147483648,
2147483647] %ld

long long int 8 8 [-9223372036854775808,
9223372036854775807] %lld

float 4 4 approx [10-38, 1038] %f

double 8 8 approx [10-308, 10308] %lf

long double 12 16 approx [10-4932, 104932] %Lf

pointer 4 8 [0, 4294967295] %p

see sizeofs.c

CSE333 lec 2 C.1 // 03-28-12 // gribble

C99 extended integer types
Solve the conundrum of “how big is a long int?”

#include <stdint.h>

void foo(void) {
 int8_t w; // exactly 8 bits, signed
 int16_t x; // exactly 16 bits, signed
 int32_t y; // exactly 32 bits, signed
 int64_t z; // exactly 64 bits, signed

 uint8_t a; // exactly 8 bits, unsigned
 ...etc.
}

CSE333 lec 2 C.1 // 03-28-12 // gribble

Similar to Java...
- variables

‣ C99: don’t have to declare at start of a function or block

‣ need not be initialized before use (gcc -Wall will warn)

#include <stdio.h>

int main(int argc, char **argv) {
 int x, y = 5; // note x is uninitialized!
 long z = x+y;

 printf("z is '%ld'\n", z); // what’s printed?
 {
 int y = 10;
 printf("y is '%d'\n", y);
 }
 int w = 20; // ok in c99
 printf("y is '%d', w is '%d'\n", y, w);
 return 0;
}

varscope.c

CSE333 lec 2 C.1 // 03-28-12 // gribble

Similar to Java...
const
- a qualifier that indicates the variable’s value cannot change

- compiler will issue an error if you try to violate this

- why is this qualifier useful?

#include <stdio.h>

int main(int argc, char **argv) {
 const double MAX_GPA = 4.0;

 printf("MAX_GPA: %g\n", MAX_GPA);
 MAX_GPA = 5.0; // illegal!
 return 0;
}

consty.c

CSE333 lec 2 C.1 // 03-28-12 // gribble

Similar to Java...
for loops
- C99: can declare variables in the loop header

if/else, while, and do/while loops
- C99: bool type supported, with #include <stdbool.h>

- any type can be used; 0 means false, everything else true

 int i;

 for (i=0; i<100; i++) {
 if (i % 10 == 0) {
 printf("i: %d\n", i);
 }
 }

loopy.c

CSE333 lec 2 C.1 // 03-28-12 // gribble

Similar to Java...
parameters / return value
- C always passes

arguments by value

- “pointers”
‣ lets you pass by reference

‣ more on these soon

‣ least intuitive part of C

‣ very dangerous part of C

void add_pbv(int c) {
 c += 10;
 printf("pbv c: %d\n", c);
}

void add_pbr(int *c) {
 *c += 10;
 printf("pbr *c: %d\n", *c);
}

int main(int argc, char **argv) {
 int x = 1;

 printf("x: %d\n", x);

 add_pbv(x);
 printf("x: %d\n", x);

 add_pbr(&x);
 printf("x: %d\n", x);

 return 0;
}

pointy.c

CSE333 lec 2 C.1 // 03-28-12 // gribble

Very different than Java
arrays
- just a bare, contiguous block of memory of the correct size

- an array of 10 ints requires 10 x 4 bytes = 40 bytes of memory

arrays have no methods, do not know their own length
- C doesn’t stop you from overstepping the end of an array!!

- many, many security bugs come from this

CSE333 lec 2 C.1 // 03-28-12 // gribble

Very different than Java
strings
- array of char

- terminated by the NULL character ‘\0’

- are not objects, have no methods; string.h has helpful utilities

h e l l o \n \0

 char *x = ”hello\n”;

x

CSE333 lec 2 C.1 // 03-28-12 // gribble

Very different than Java
errors and exceptions
- C has no exceptions (no try / catch)

- errors are returned as integer error codes from functions

- makes error handling ugly and inelegant

crashes
- if you do something bad, you’ll end up spraying bytes around

memory, hopefully causing a “segmentation fault” and crash

objects
- there aren’t any; struct is closest feature (set of fields)

CSE333 lec 2 C.1 // 03-28-12 // gribble

Very different than Java
memory management
- you must to worry about this; there is no garbage collector

- local variables are allocated off of the stack
‣ freed when you return from the function

- global and static variables are allocated in a data segment
‣ are freed when your program exits

- you can allocate memory in the heap segment using malloc()
‣ you must free malloc’ed memory with free()

‣ failing to free is a leak, double-freeing is an error (hopefully crash)

CSE333 lec 2 C.1 // 03-28-12 // gribble

Very different than Java
console I/O
- C standard library has portable routines for reading/writing

‣ scanf, printf

file I/O
- C standard library has portable routines for reading/writing

‣ fopen, fread, fwrite, fclose, etc.

‣ does buffering by default, is blocking by default

- OS provides (less portable) routines
‣ we’ll be using these: more control over buffering, blocking

CSE333 lec 2 C.1 // 03-28-12 // gribble

Very different than Java
network I/O
- C standard library has no notion of network I/O

- OS provides (somewhat portable) routines

- lots of complexity lies here
‣ errors: network can fail

‣ performance: network can be slow

‣ concurrency: servers speak to thousands of clients simultaneously

CSE333 lec 2 C.1 // 03-28-12 // gribble

Very different than Java
Libraries you can count on
- C has very few compared to most other languages

- no built-in trees, hash tables, linked lists, sort , etc.

- you have to write many things on your own
‣ particularly data structures

‣ error prone, tedious, hard to build efficiently and portably

- this is one of the main reasons C is a much less productive
language than Java, C++, python, or others

CSE333 lec 2 C.1 // 03-28-12 // gribble

See you on Friday!

