CoE 333

Lecture 2 - gentle re-introduction to C

Steve Gribble
Department of Computer Science & Engineering
University of Washington

CSE333 lec 2 C.1// 03-28-12 // gribble

HWO results

question T F

| have a laptop | can bring to class / section 90% 10%

languages | have used: € (87%) C++ (32%) x86 (56%) ARM (0%)
Java (100%) Python (57%) Perl (4%) Ruby (38%)
JavaScript (59%) Go (0%) Haskell (3%) Klingon (3%)

languages I’'m awesome at: C (4%) C++ (1%) x86 (1%)
ARM (0%) Java (100%) Python (21%) Perl (0%) Ruby (3%)
JavaScript (15%) Go (0%) Haskell (1%) Romulan (3%)

Most code | have written as part of a product is: 1-100 lines (1%)
100-1000 lines (38%) 1000-10000 lines (65%) 10000+ (8.5%)

CSE333 lec 2 C.1// 03-28-12 // gribble

HWO results

question
| took 351 from Mark Oskin last quarter
| have debugged pointer errors in my code

| have debugged memory leaks in my code
| have written network code

| have used the file system from my code

CSE333 lec 2 C.1// 03-28-12 // gribble

HWO results

guestion T F

| kKnow what a system call is; I've used one 27% 73%

| can write a Makefile 41% 59%

I’'ve used a revision control system 91% 9%

pick a number
between O and 9 I I I I
0 1 2 3 4 5 6 7 8 9

: 03-28-12 // gribble

HW O results

Factor a ridiculously large number:

‘Do not know, and don't have enough time to find out”

2, 311, 20048005859189056910644911527, why would
you ask such a question?”

CSE333 lec 2 C.1// 03-28-12 // gribble

Today’s goals:

- overview of the C material you learned from cse351

Next two weeks’ goals:
- dive in deep into more advanced C topics
- start writing some C code

- Introduce you to interacting with the OS

CSE333 lec 2 C.1// 03-28-12 // gribble

Attribution

The slides I'll be using are a mixture of:
- my own material

- slides from other UW CSE courses (CSE303, CSE351; thanks
Magda Balazinska, Marty Stepp, John Zahorjan, Hal Perkins,
Gaetano Borriello and othersl!)

- material from other universities’ courses (particularly CMU’s
15-213 and some Harvard courses; thanks Randy Bryant,
Dave O’Hallaron, Matt Welsh, and others!!)

All mistakes are mine. (No, really.)

CSE333 lec 2 C.1// 03-28-12 // gribble

‘ SECOND EDITION

THE

Created in 1972 by Dennis Ritchie

PROGRAMMING

- designed for creating system}ftvva:y LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

This book was typeset (pic|tbl|
eqn|troff -ms) using an Autologic
APS-5 phototypesetter and a DEC
VAX 8550 running the 9th Edition of
the UNIX operating system.

- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

CSE333 lec 2 C.1// 03-28-12 // gribble

Mindset of C

“The PDP-11/45 on which our UNIX installation is
implemented is a:

- 16-bit word (8-bit byte) computer with
» 144K bytes of core memory; UNIX occupies 42K bytes
» a 1M byte fixed-head disk

» a moving-head disk with 40M byte disk packs
- The greater part of UNIX software is written in C.”

Dennis M. Ritchie and Ken Thompson

Bell Laboratories
1974

CSE333 lec 2 C.1// 03-28-12 // gribble

C workflow

execute,
debug,
profile,

source
files
(.c, .h) object

files
Editor L0 T

(emacs, Vi) compile executable process

’ edlt
or IDE

(eclipse) link link
- e - -
[libz B a] [libc 2 so]

statically linked shared
libraries libraries

CSE333 lec 2 C.1// 03-28-12 // gribble

From C to machine code

C source file int dosum(int i, int j) {

return i+j;

(dosum.c) }

v

C compiler (gcc -S)

; !

dosum:
pushl zebp
assembly source file o tesp, %ebp
movl 12 (%ebp), %eax
(dOSUﬂlS) addl 8(%ebp), %eax
popl zebp
ret
N\ 1
: 55 ¢
machine code | 89 e5 8b 45
Oc 03 45 08 ®&— assembler (as)
(dosum.o) i

. CSE333 lec 2 C.1// 03-28-12 // gribble

Skipping assembly language

Most C compilers generate .o files (machine code) directly

- l.e., without actually saving the readable .s assembly file

[dosum. c\]—b gce -S —{dosum. SJ_> as dosum. o}

CSE333 lec 2 C.1// 03-28-12 // gribble

Multi-file C programs

int dosum(int i, int j) { this “prototype” of
return i+j; dosum() tells gcc
about the types of
dosum’s arguments
and its return value

C source file
(dosum.c) }

#include <stdio.h>
C source f||e {int dosum(int i, int j);

(sumnum.c) int main(int argc har **argv) {
printf ("%d\n" , ; dosum() IS
return 0; —® implemented

} :
N Ssumnum.cC
“eleleleleloleleleloleloleloleloleloleleololotolololotvieleiatoly

CSE333 lec 2 C.1// 03-28-12 // gribble

Multi-

C source file
(dosum.c)

C source file
(sumnum.c)

file C programs

int dosum(int i, int j) {
return i+j;

}

why do we need
—» this #include?

C |#include <stdio.h>

int dosum(int i, int j);

where is the

—» implementation
of printf?

CSE333 lec 2 C.1// 03-28-12 // gribble

Compiling multi-file programs

Multiple object files are linked to produce an executable
- standard libraries (libc, crtl, ...) are usually also linked in

- alibrary is just a pre-assembled collection of .o files

[dosum. c}—b gcc -C —P[dosum. o}\

(or CC

el

d — [sumnum]

(e.g., libc)

CSE333 lec 2 C.1// 03-28-12 // gribble

Object files

sumnum.o, dosum.o are object files
- each contains machine code produced by the compiler

- each might contain references to external symbols
» variables and functions not defined in the associated .c file

» €e.g., sumnum.o contains code that relies on printf() and dosum(),
but these are defined In libc.a and dosum.o, respectively

- linking resolves these external symbols while smooshing
together object files and libraries

CSE333 lec 2 C.1// 03-28-12 // gribble

Let’'s dive into C itself

Things that are the same as Java
syntax for statements, control structures, function calls
types: int, double, char, long, float
type-casting syntax; float x = (float) 5 / 3;

expressions, operators, precedence

* [/ %+t —= = 4= —= *= [= %= < <= == I= > >= §& || !
scope (local scope is within a set of { } braces)

comments; /* comment */ // comment

CSE333 lec 2 C.1// 03-28-12 // gribble

Primitive types in C

see Sizeofs.c

Iﬂteger typeS type (ggtﬁﬁ) (gitﬁﬁ) 32 bit range

char 1 1 [0, 255]

- char, int
short int

ﬂoa’[iﬂg pOiI'Tt unsigned short int
int

3 ﬂOat, dOUDle unsigned int

[-32768,32767]

[0, 65535]

[-214748648,
2147483647]

[0, 4294967295]

[-2147483648,
2147483647]

[[9223372036854775808,
9223372036854775807]

long int

modifiers

long long int

short [int] =
double
|Ong [iﬂ’[, dOUble] long double

pointer

approx [10-38, 1038]

o|lr|lo|lr]lrlrn]lnv]d
o|lr|lo]|]lo]|r|lr]Nd]N

approx [10-308, 10308]

RN
N
-
(o)}

approx [10-4932, 104932]

D
oo

[0, 4294967295]

signed [char, int]

unsigned [char, int]

CSE333 lec 2 C.1// 03-28-12 // gribble

C99 extended integer types

Solve the conundrum of “how big is a long int?”

#include <stdint.h>

void foo(void) {
int8 t w; // exactly 8 bits, signed
intl6_t x; // exactly 16 bits, signed
int32 t y; // exactly 32 bits, signed
int64 t z; // exactly 64 bits, signed

uint8 t aj; // exactly 8 bits, unsigned
.etc.

CSE333 lec 2 C.1// 03-28-12 // gribble

Similar to Java...

- variables

» C99: don’t have to declare at start of a function or block

» need not be initialized before use (gcc -Wall will warn)

-
#include <stdio.h>

int main(int argc, char **argv) {
$ RN vt // note x is uninitialized!
long z = x+y;

printf("z is '$ld'\n", z); // what’s printed?
varscope.c {

int y = 10;

printf("y is '%d'\n", y);
}
Fhittiwiisi2 0l o kini+c99
printf("y is '3d', w is '%3d'\n", y, w);
return O;

Similar to Java...

const
- a qualifier that indicates the variable’s value cannot change
- compiler will issue an If you try to violate this

- why is this qualifier useful?

-
#include <stdio.h>

int main(int argc, char **argv) {

const double MAX GPA = 4.0;
consty.c
printf("MAX GPA: %g\n", MAX GPA);
MAX GPA = 5.0; // illegal!
return O;

}
\ J

CSE333 lec 2 C.1// 03-28-12 // gribble

Similar to Java...

for loops

- C99: can declare variables in the loop header

if/else, while, and do/while loops

- C99: bool type supported, with #include <stdbool.h>

- any type can be used; 0 means false, everything else true

4 N
int 1i;

for (i=0; i<
if (1 % ==
printf (

CSE333 lec 2 C.1// 03-28-12 // gribble

Similar to Java... oIty

-
void add _pbv(int c) {

c += 10;

parameters / return value printf("pbv c: 2d\n", c);
}

- C always passes . .
void add_pbr(int *c) {
arguments by value xc += 10;
printf ("pbr *c: %d\n", *c);
- “pointers” }

int main(int argc, char **argv) {
int x = 1;

lets you pass by reference

more on these soon printf("x: 3d\n", x);

least intuitive part of C add_pbv (x) ;
printf("x: %d\n", x);

very dangerous part of C
g J b add_pbr (&x);

printf("x: %d\n", x);

return O;

Very different than Java

arrays

- Just a bare, contiguous block of memory of the correct size

- an array of 10 ints requires 10 x 4 bytes = 40 bytes of memory
arrays have no methods, do not know their own length

- G doesn’t stop you from overstepping the end of an array!!

- many, many security bugs come from this

CSE333 lec 2 C.1// 03-28-12 // gribble

Very different than Java

strings
- array of char
- terminated by the NULL character \O’

- are not objects, have no methods; string.h has helpful utilities

\n|\O

J

CSE333 lec 2 C.1// 03-28-12 // gribble

Very different than Java

errors and exceptions

- C has no exceptions (no try / catch)

- errors are returned as integer error codes from functions
- makes error handling ugly and inelegant

crashes

- if you do something bad, you'’ll end up spraying bytes around
memory, hopefully causing a “segmentation fault” and crash

objects

- there aren’t any; struct is closest feature (set of fields)

CSE333 lec 2 C.1// 03-28-12 // gribble

Very different than Java

memory management
you must to worry about this; there is no garbage collector
local variables are allocated off of the stack
» freed when you return from the function
global and static variables are allocated in a data segment
» are freed when your program exits

you can allocate memory in the heap segment using malloc()
» you must free malloc’ed memory with free()

» failing to free is a leak, double-freeing is an error (hopefully crash)

CSE333 lec 2 C.1// 03-28-12 // gribble

Very different than Java

console I/0

- G standard library has portable routines for reading/writing

» scanf, printf

file 1/0O

- C standard library has portable routines for reading/writing
» fopen, fread, fwrite, fclose, etc.
» does buffering by default, is blocking by default

- OS provides (less portable) routines

» we'll be using these: more control over buffering, blocking

CSE333 lec 2 C.1// 03-28-12 // gribble

Very different than Java

network /O
- C standard library has no notion of network /O
- OS provides (somewhat portable) routines

- |lots of complexity lies here
» errors: network can fall
» performance: network can be slow

» concurrency: servers speak to thousands of clients simultaneously

CSE333 lec 2 C.1// 03-28-12 // gribble

Very different than Java

Libraries you can count on
C has very few compared to most other languages
no built-in trees, hash tables, linked lists, sort , etc.

you have to write many things on your own

» particularly data structures

» error prone, tedious, hard to build efficiently and portably

this is one of the main reasons C is a much less productive
language than Java, C++, python, or others

CSE333 lec 2 C.1// 03-28-12 // gribble

See you on Friday!

CSE333 lec 2 C.1// 03-28-12 // gribble

