CSE 333 Lecture 17 - intro to concurrency

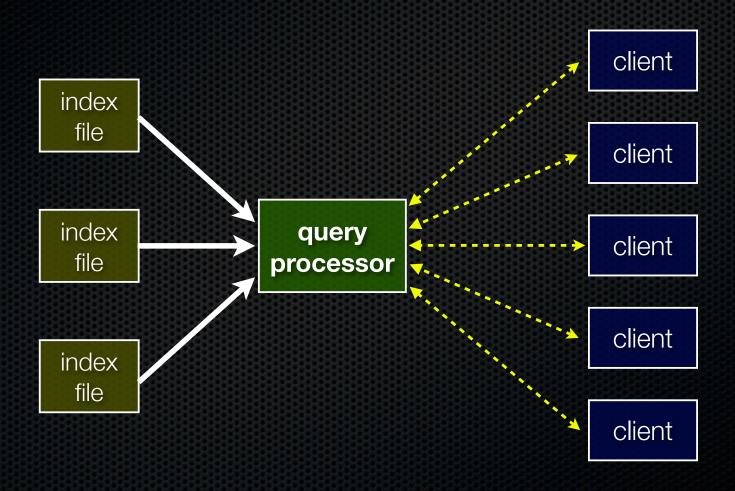
Steve Gribble

Department of Computer Science & Engineering University of Washington

Today's goals

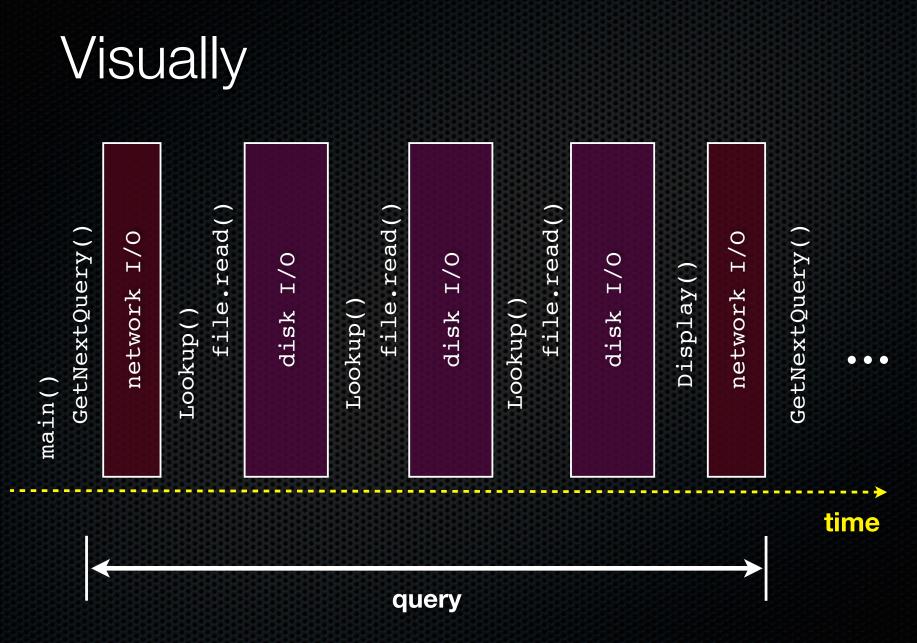
Concurrency

- why it is useful
- why it is hard

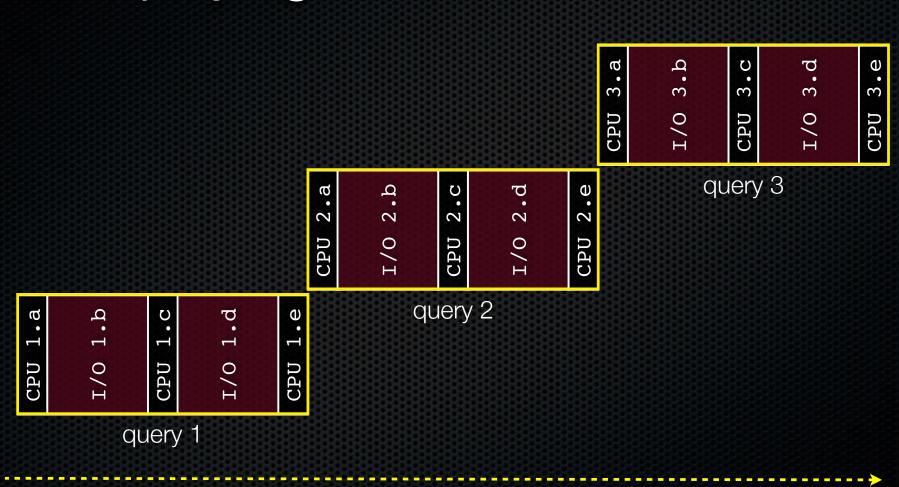

Concurrent programming styles

- using multiple threads or processes
- using asynchronous or non-blocking I/O
 - event-driven programming

Let's imagine you want to...

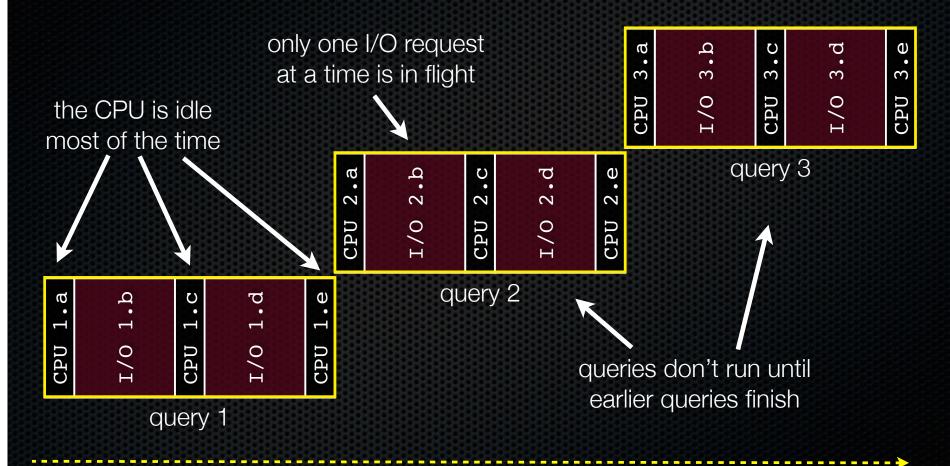

- ...build a web search engine.
- you need a Web index
 - an inverted index (a map from "word" to "list of documents containing the word")
 - probably sharded over multiple files
- a query processor
 - accepts a query composed of multiple words
 - looks up each word in the index
 - merges the result from each word into an overall result set

Architecturally



A sequential implementation

```
doclist Lookup(string word) {
  bucket = hash(word);
  hitlist = file.read(bucket);
  foreach hit in hitlist {
    doclist.append(file.read(hit));
  return doclist;
main() {
  while (1) {
    string query_words[] = GetNextQuery();
    results = Lookup(query words[0]);
    foreach word in query[1..n] {
      results = results.intersect(Lookup(word));
    Display(results);
```



Simplifying

time

Simplifying

time

Sequentiality can be inefficient

Only one query is being processed at a time

- all other queries queue up behind the first one

The CPU is idle most of the time

- it is "blocked" waiting for I/O to complete
 - disk I/O can be very, very slow

At most one I/O operation is in flight at a time

- misses opportunities to speed I/O up
 - separate devices in parallel, better scheduling of single device, ...

What we want...concurrency

A version of the program that executes multiple **tasks** simultaneously

- it could execute multiple queries at the same time
 - while one is waiting for I/O, another can be executing on the CPU
- or, it could execute queries one at a time, but issue
 IO requests against different files/disks simultaneously
 - it could read from several different index files at once, processing the I/O results as they arrive

Concurrency != parallelism

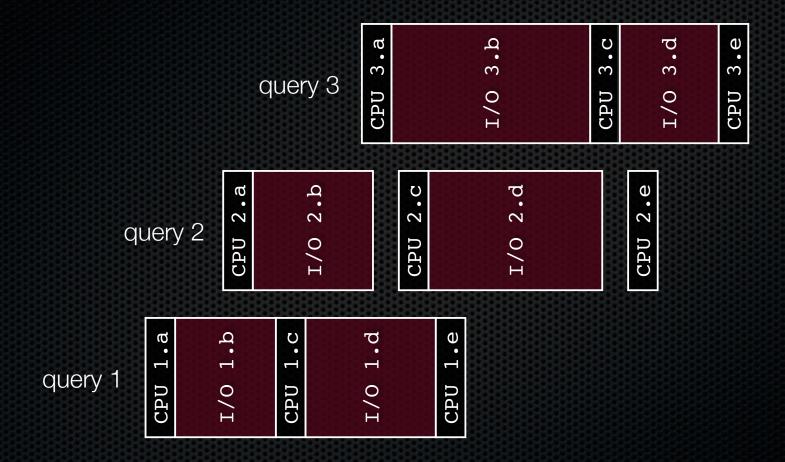
- parallelism is when multiple CPUs work simultaneously

One way to do this

Use multiple threads or processes

- as a query arrives, **fork** a new thread, or process, to handle it
 - the thread reads the query from the console, issues read requests against files, assembles results and writes to the console
 - the thread uses blocking I/O; the thread alternates between consuming CPU cycles and blocking on I/O
- the OS context switches between threads / processes
 - while one is blocked on I/O, another can use the CPU
 - multiple threads' I/O requests can be issued at once

Multithreaded pseudocode


```
main() {
  while (1) {
    string query_words[] = GetNextQuery();
    ForkThread(ProcessQuery());
  }
}
```

```
doclist Lookup(string word) {
  bucket = hash(word);
  hitlist = file.read(bucket);
  foreach hit in hitlist
    doclist.append(file.read(hit));
  return doclist;
}

ProcessQuery() {
  results = Lookup(query_words[0]);
   foreach word in query[1..n] {
    results = results.intersect(Lookup(word));
   }
  Display(results);
}
```

icy // 05-16-12 // gribble

Multithreaded, visually

Whither threads?

Advantages

- you (mostly) write sequential-looking code
- if you have multiple CPUs / cores, threads can run in parallel

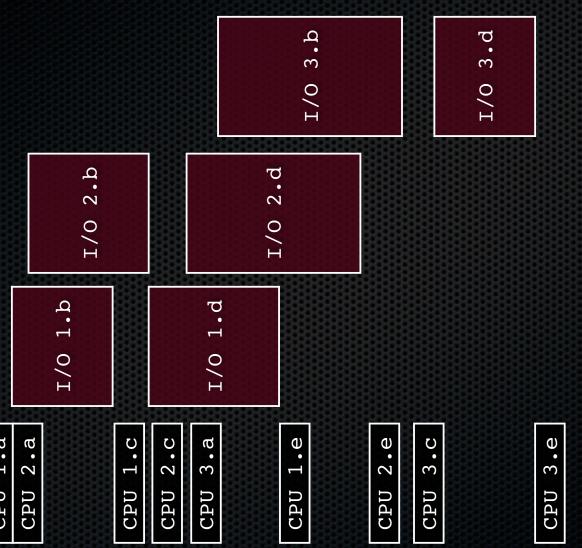
Disadvantages

- if your threads share data, need locks or other synchronization
 - this is very bug-prone and difficult to debug
- threads can introduce overhead
 - lock contention, context switch overhead, and other issues
- need language support for threads

An alternative

Use asynchronous or non-blocking I/O

- your program begins processing a query
 - when your program needs to read data to make further progress, it registers interest in the data with the OS, then switches to a different query
 - the OS handles the details of issuing the read on the disk, or waiting for data from the console (or other devices, like the network)
 - when data becomes available, the OS lets your program know
- your program (almost never) blocks on I/O


Event-driven programming

Your program is structured as an event-loop

```
void dispatch(task, event) {
  switch(task.state) {
    case READING FROM CONSOLE:
      query words = event.data;
      async read(index, query words[0]);
      task.state = READING FROM INDEX;
      return;
    case READING FROM INDEX:
      ...etc.
while(1) {
  event = OS.GetNextEvent();
  task = lookup(event);
  dispatch(task, event);
```

CSE333 lec 17 concurrency // 05-16-12 // gribble

Asynchronous, event-driven

time

Non-blocking vs. asynchronous

Non-blocking I/O (network, console)

- your program enables non-blocking I/O on its fd's
- your program issues read(), write() system calls
 - if the read/write would **block**, the system call returns immediately
- program can ask the OS which fd's are readable/writeable
 - program can choose to block while no fds are ready

Asynchronous I/O (disk)

- program tells the OS to begin reading / writing
 - the "begin_read" or "begin_write" returns immediately
 - when the I/O completes, OS delivers an event to the program

Why the difference?

Non-blocking I/O

- according to Linux, the disk never **blocks** your program
 - it just delays it
- but, reading from the network can truly block your program
 - a remote computer may wait arbitrarily long before sending data

Asynchronous I/O

- primarily used with disks; is used to hide disk latency
 - asynchronous I/O system calls are messy and complicated :(
 - instead, typically use a threadpool to emulate asynchronous I/O

Whither events?

Advantages

- don't have to worry about locks and "race conditions"
- for some kinds of programs, especially GUIs, leads to a very simple and intuitive program structure
 - one event handler for each UI event

Disadvantages

- can lead to very complex structure for programs that do lots of disk, network I/O
 - sequential code gets broken up into a jumble of small event handlers
 - you have to package up all task state between handlers

One way to think about it

Threaded code:

- each thread executes its task sequentially, and per-task state is naturally stored in the thread's stack
- OS and thread scheduler switch between threads for you

Event-driven code:

- *you* are the scheduler
- you have to bundle up task state into continuations; tasks do not have their own stacks

