CSE 333
Lecture 15 -- server sockets

Steve Gribble
Department of Computer Science & Engineering
University of Washington
Administrivia

HW3 out later this week

We will have 2 exercises this week
- today’s is due on Friday, as it is a little more involved

Midterm grading bonanza is tomorrow
- back on Wednesday
More administrivia

Cody’s office hours are moved to Thursday for this week only

- Thursday, 1:30pm-3:20pm, in CSE022
Today

Network programming
- server-side programming
Remember from client sockets

We had a client open a TCP connection to a server using the sockets API

- there were five steps:
 1. figure out the address and port to which to connect
 2. create a socket
 3. connect the socket to the remote server
 4. read and write data using the socket
 5. close the socket
Servers

Pretty similar to clients, but with additional steps

- there are seven steps:

 1. figure out the **address and port** on which to listen
 2. create a **socket**
 3. **bind** the socket to the address and port on which to listen
 4. indicate that the socket is a **listening** socket
 5. **accept** a connection from a client
 6. **read** and **write** to that connection
 7. **close** the connection
Accepting a connection from a client

Step 1. Figure out the address and port on which to listen.

Step 2. Create a socket.

Step 3. **Bind** the socket to the address and port on which to listen.

Step 4. Indicate that the socket is a **listening** socket.
Servers

Servers can have multiple IP addresses

- “multihomed”
- usually have at least one externally visible IP address, as well as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses
 ‣ by specifying the address “INADDR_ANY” -- a.k.a. 0.0.0.0
- specify that it should listen on a particular address
bind()

The “bind()” system call associates with a socket:

- an address family
 - AF_INET: IPv4
 - AF_INET6: IPv6

- a local IP address
 - the special IP address INADDR_ANY (also known as “0.0.0.0”) means “all local IP addresses of this host”

- a local port number
listen()

The “listen()” system call tells the OS that the socket is a listening socket to which clients can connect

- you also tell the OS how many pending connections it should queue before it starts to refuse new connections
 ‣ you pick up a pending connection with “accept()”

- when listen returns, remote clients can start connecting to your listening socket
 ‣ you need to “accept()” those connections to start using them
Server socket, bind, listen

see server_bind_listen.cc
Accepting a connection from a client

Step 5. **Accept** a connection from a client.

Step 6. `read()` and `write()` to the client.

Step 7. `close()` the connection.
accept()

The “accept()” system call waits for an incoming connection, or pulls one off the pending queue

- it returns an active, ready-to-use socket file descriptor connected to a client

- it returns address information about the peer
 ‣ use inet_ntop() to get the client’s printable IP address
 ‣ use getnameinfo() to do a reverse DNS lookup on the client
Server accept, read/write, close

see server_accept_rw_close.cc
Something to note...

Our server code is not concurrent

- single thread of execution
- the thread blocks waiting for the next connection
- the thread blocks waiting for the next message from the connection

A crowd of clients is, by nature, concurrent

- while our server is handling the next client, all other clients are stuck waiting for it
Exercise 1

Write a program that:

- creates a listening socket, accepts connections from clients
 - reads a line of text from the client
 - parses the line of text as a DNS name
 - does a DNS lookup on the name
 - writes back to the client the list of IP addresses associated with the DNS name
 - closes the connection to the client
Exercise 2

Write a program that:

- creates a listening socket, accepts connections from clients
 - reads a line of text from the client
 - parses the line of text as a DNS name
 - connects to that DNS name on port 80
 - writes a valid HTTP request for “/”
 • see next slide for what to write
 - reads the reply, returns the reply to the client
Exercise 2 continued

Here’s a valid HTTP request to server www.foo.com

- note that lines end with ‘\r\n’, not just ‘\n’

```
GET / HTTP/1.0\r\nHost: www.foo.com\r\nConnection: close\r\n\r\n```
See you on Friday!