
CSE 333: Systems Programming 

Section 9 

IP and TCP Packets 



IP Packets 

So far we’ve seen: 

Data transfer with TCP-based reads and writes 

(no need to know about underlying packets) 

Data transfer with UDP-based reads and writes 

(explicitly send and receive packets) 

IP (Internet Protocol) packets are what 

facilitate these two types of transfers 

11/29/12 2 



IP Packets 

 IP packet header format (from Wikipedia): 
 
 
 
 
 

 Packets sent over the network all have this IP header, 
which indicates the version (4 for IPv4), the header 
length (in 4-byte words), the protocol (TCP, UDP, etc.), 
the source, the destination, and so forth 

What happens if the checksum isn’t correct? 

11/29/12 3 



IP Packets 

 IP packet header format (from Wikipedia): 
 
 
 
 
 

 The IP packet header is followed by data for 
whichever protocol is being used 
 For TCP, the data is a TCP header, followed by the 

contents of the message itself 
 For UDP, the data is just the contents of the message 

11/29/12 4 



TCP Packets 

TCP packet header format (from Wikipedia): 

 

 

 

 

 

When a client connects to a server using TCP, 

the client and server participate in a three-way 

handshake using packets of this form 

11/29/12 5 



TCP Packets 

 Initial message is a SYN: 

 

 

 

 

 

The client picks an arbitrary sequence number, 

sets the flag for SYN, and dispatches the packet 

to the server 

11/29/12 6 



TCP Packets 

 The receiver responds with a SYN/ACK: 
 
 
 
 
 
 
 

 The server picks an arbitrary sequence number, sets the 
acknowledgment number to M + 1, sets the flags for both 
SYN and ACK, and dispatches the packet to the client 

11/29/12 7 



TCP Packets 

 The client responds with an ACK: 
 
 
 
 
 
 
 

 The client confirms receipt of the server’s SYN, at 
which point the client and server have established a 
connection 

11/29/12 8 



TCP Packets 

The sequence number of future packets is 
based on the number of bytes sent by the client 
or server 

When one of them sends data, it does so with 
the SYN flag set 
 The receiver confirms receipt with an ACK and an 

acknowledgment number equal to the sender’s 
sequence number 

The client and server terminate the connection 
by exchanging (and acknowledging) FIN packets 
 The RST flag can also be used to reset the connection 

11/29/12 9 



TCP Packets 

It seems like things can go wrong in this 

process, though… 

What should the server do if it receives a SYN but 

the client never responds to its SYN/ACK? 

What should the client or server do if the other 

side never acknowledges a FIN? 

11/29/12 10 



Port Scanning 

To see which ports are open on a particular 

machine, a simple TCP port scanner can try 

to connect to each one in sequence through 

a SYN, SYN/ACK, SYN handshake (i.e. via the 

connect() function) 

Some machines detect such port scans, 

though, and filter incoming connections from 

the host 
11/29/12 11 



Port Scanning 

There is a trick we can play, however: 

Rather than opening a full TCP connection and 

then closing it, we can simply send a SYN, wait 

for a response, and then terminate the 

connection (using an RST to reset it) 

 If the target responds with a SYN/ACK, then the 

port is open, and if it responds with an RST, then 

the port is closed 

11/29/12 12 



Section exercise 

 Finish implementing a raw socket port scanner 
 You only need to write the code for processing received 

packets; see raw_scanner.cc 
 Run the program with the -t flag for the simple TCP port 

scanner or -r for the raw socket port scanner, e.g. 
./port_scan -t 127.0.0.1 

 You’ll need to run as root to use the raw socket port 
scanner, unfortunately (sudo ./port_scan -r …) 

 Make sure you find the same ports open on your machine 
with the TCP scan versus the raw socket scan 

 Submit raw_scanner.cc to the Dropbox when done 

11/29/12 13 


