
CSE 333: Systems Programming 

Section 9 

IP and TCP Packets 



IP Packets 

So far we’ve seen: 

Data transfer with TCP-based reads and writes 

(no need to know about underlying packets) 

Data transfer with UDP-based reads and writes 

(explicitly send and receive packets) 

IP (Internet Protocol) packets are what 

facilitate these two types of transfers 

11/29/12 2 



IP Packets 

 IP packet header format (from Wikipedia): 
 
 
 
 
 

 Packets sent over the network all have this IP header, 
which indicates the version (4 for IPv4), the header 
length (in 4-byte words), the protocol (TCP, UDP, etc.), 
the source, the destination, and so forth 

What happens if the checksum isn’t correct? 

11/29/12 3 



IP Packets 

 IP packet header format (from Wikipedia): 
 
 
 
 
 

 The IP packet header is followed by data for 
whichever protocol is being used 
 For TCP, the data is a TCP header, followed by the 

contents of the message itself 
 For UDP, the data is just the contents of the message 

11/29/12 4 



TCP Packets 

TCP packet header format (from Wikipedia): 

 

 

 

 

 

When a client connects to a server using TCP, 

the client and server participate in a three-way 

handshake using packets of this form 

11/29/12 5 



TCP Packets 

 Initial message is a SYN: 

 

 

 

 

 

The client picks an arbitrary sequence number, 

sets the flag for SYN, and dispatches the packet 

to the server 

11/29/12 6 



TCP Packets 

 The receiver responds with a SYN/ACK: 
 
 
 
 
 
 
 

 The server picks an arbitrary sequence number, sets the 
acknowledgment number to M + 1, sets the flags for both 
SYN and ACK, and dispatches the packet to the client 

11/29/12 7 



TCP Packets 

 The client responds with an ACK: 
 
 
 
 
 
 
 

 The client confirms receipt of the server’s SYN, at 
which point the client and server have established a 
connection 

11/29/12 8 



TCP Packets 

The sequence number of future packets is 
based on the number of bytes sent by the client 
or server 

When one of them sends data, it does so with 
the SYN flag set 
 The receiver confirms receipt with an ACK and an 

acknowledgment number equal to the sender’s 
sequence number 

The client and server terminate the connection 
by exchanging (and acknowledging) FIN packets 
 The RST flag can also be used to reset the connection 

11/29/12 9 



TCP Packets 

It seems like things can go wrong in this 

process, though… 

What should the server do if it receives a SYN but 

the client never responds to its SYN/ACK? 

What should the client or server do if the other 

side never acknowledges a FIN? 

11/29/12 10 



Port Scanning 

To see which ports are open on a particular 

machine, a simple TCP port scanner can try 

to connect to each one in sequence through 

a SYN, SYN/ACK, SYN handshake (i.e. via the 

connect() function) 

Some machines detect such port scans, 

though, and filter incoming connections from 

the host 
11/29/12 11 



Port Scanning 

There is a trick we can play, however: 

Rather than opening a full TCP connection and 

then closing it, we can simply send a SYN, wait 

for a response, and then terminate the 

connection (using an RST to reset it) 

 If the target responds with a SYN/ACK, then the 

port is open, and if it responds with an RST, then 

the port is closed 

11/29/12 12 



Section exercise 

 Finish implementing a raw socket port scanner 
 You only need to write the code for processing received 

packets; see raw_scanner.cc 
 Run the program with the -t flag for the simple TCP port 

scanner or -r for the raw socket port scanner, e.g. 
./port_scan -t 127.0.0.1 

 You’ll need to run as root to use the raw socket port 
scanner, unfortunately (sudo ./port_scan -r …) 

 Make sure you find the same ports open on your machine 
with the TCP scan versus the raw socket scan 

 Submit raw_scanner.cc to the Dropbox when done 

11/29/12 13 


