CSE 333: Systems Programming

11/29/12

IP Packets

So far we’ve seen:

* Data transfer with TCP-based reads and writes
(no need to know about underlying packets)

* Data transfer with UDP-based reads and writes
(explicitly send and receive packets)

IP (Internet Protocol) packets are what
facilitate these two types of transfers

IP Packets

IP packet header format (from Wikipedia):

Offsets Octet 0 1 2 3
Octet Bit 01 23 4 56 7 891011121314 1516171819 20|21 22 2324 25 26 27|28 29 30| 1

1] Version IHL DSCP ECN Total Length

32 Identification Flags Fragment Offset

b4 Time To Live Profocol Header Checksum
96 Source [P Address

Destination |P Address

11/29/12

Options (i IHL > 5)
Packets sent over the network all have this IP header,
which indicates the version (4 for IPv4), the header
length (in 4-byte words), the protocol (TCP, UDP, etc.),
the source, the destination, and so forth

What happens if the checksum isn’t correct?

11/29/12

IP Packets

IP packet header format (from Wikipedia):

Offsets Octet 0 1 2 3

Octet Bit 01,2 32 4 5 6 7 & 91011212/ 1415/16 /17|18 19 20|21 22|23 24|25 26 27 |28 29 30

1] Version IHL DSCP ECN Total Length

32 Identification Flags

Fragment Offset
64 Time To Live Protocol

96

Header Checksum
Source [P Address
Destination |P Address

Options (if IHL = 5)
The IP packet header is followed by data for

whichever protocol is being used

* For TCP, the data is a TCP header, followed by the
contents of the message itself

* For UDP, the data is just the contents of the message

TCP Packets

TCP packet header format (from Wlklpedla)

Offsets Octet 1
Octet | Bit (0|12 |3 4|5 |6 |7/8(%/10(11/12 13(14|15|16(17|18/19%(20|21 |22 |23 |24 |25 26|27 |28|29(30 |31

0 Source port Destination port

4 Sequence number

8 Acknowledgment number (if LCE set)

12 Window Size

16 | 128 Checksum Urgent pointer (if URG set)

20 | 1&D Options (if Data Offset = 5, padded at the end with "0" bytes if necessary)

When a client connects to a server using TCP,
the client and server participate in a three-way
handshake using packets of this form

11/29/12

11/29/12

TCP Packets

Initial message is a SYN:

Offsets Octet 0 1 7
Octet | Bit (01|23 4|5 |6 |7(8/9(10/11(12/13(14|15 /16|17 18|19 20|21 22 (23|24 |25 26(27/28/29(30 |31

3

0] Source port Destination port

4 32 Sequence number M (some arbitrary number)

8 61 Acknowledgment number (if LCK set)
U
Reserved |1

CE|U|&A|P|R F
12 96 | Data offset 0o _W[C/R C|5|s I Window Size
'RlE|G|E|H| T N

0 (5
16 128 Checksum SYN bit set to high Urgent pointer (if TR set)

20 | 160 Options (if Data Offset > 5, padded at the end with "0" bytes if necessary)

The client picks an arbitrary sequence number,
sets the flag for SYN, and dispatches the packet

to the server

TCP Packets

The receiver responds with a SYN/ACK:

Offsets Octet 0 1 2 3

Octet | Bit (0|12 (3|4 5|6 |7/8/9/10/11/12/13/14 |15 16|17 |18 19|20|21 |22 23 24|25/26|27 28 29|30|31
(1] 0 Source port Destination port
4 | 32 Sequence number N (some arbitrary number)
8 64 Al knowledgment number (if 2C¥ set) I + 1

d H CIE|D F

arve

12 96 |[Data offs Ht < I Window Size
H

16 | 128 Checksum “'YN and ACK set to high Urgent pointer (if URG set)

20 | 160 Options (if Data Offset > 5, padded at the end with "0" bytes if necessary)

The server picks an arbitrary sequence number, sets the
acknowledgment number to M + 1, sets the flags for both
SYN and ACK, and dispatches the packet to the client

11/29/12

11/29/12

TCP Packets

The client responds with an ACK:

Offsets Octet 0 1 2 3

Octet | Bit (01|23 4|5 |6 |7(8/9(10/11|12/13|14|15 16|17 18|19 20|21 |22 |23 24 25 26|27 28 29|30 31
0 Source port Destination port
4 Sequence number M + 1

8 Acknowledgment number (if LCE set) N + 1

cle| o PIR|S|F
Reserved | : :
12 | 96 Dataoffset =~~~ WCER s s/ Y|I Window Size
“rRE| G H| T |N|N

16 | 128 Checksum Urgent pointer (if TRE set)

20 | 160 Options (if Data Offset > 5, padded at the end with "0" bytes if necessary)

The client confirms receipt of the server’s SYN, at
which point the client and server have established a

connection

11/29/12

TCP Packets

The sequence number of future packets is

based on the number of bytes sent by the client
or server

When one of them sends data, it does so with

the SYN flag set

* The receiver confirms receipt with an ACK and an
acknowledgment number equal to the sender’s
sequence number

The client and server terminate the connection

by exchanging (and acknowledging) FIN packets
* The RST flag can also be used to reset the connection

11/29/12

TCP Packets

It seems like things can go wrong in this

process, though...

* What should the server do if it receives a SYN but
the client never responds to its SYN/ACK?

* What should the client or server do if the other
side never acknowledges a FIN?

10

11/29/12

Port Scanning

To see which ports are open on a particular
machine, a simple TCP port scanner can try
to connect to each one in sequence through
a SYN, SYN/ACK, SYN handshake (i.e. via the
connect() function)

Some machines detect such port scans,
though, and filter incoming connections from
the host

11

11/29/12

Port Scanning

There is a trick we can play, however:

* Rather than opening a full TCP connection and
then closing it, we can simply send a SYN, wait
for a response, and then terminate the
connection (using an RST to reset it)

* If the target responds with a SYN/ACK, then the
port is open, and if it responds with an RST, then
the port is closed

12

11/29/12

Section exercise

Finish implementing a raw socket port scanner

You only need to write the code for processing received
packets; see raw_scanner.cc

Run the program with the -t flag for the simple TCP port
scanner or -r for the raw socket port scanner, e.g.
./port_scan -t 127.0.0.1

You’ll need to run as root to use the raw socket port
scanner, unfortunately (sudo ./port_scan -r ...)

Make sure you find the same ports open on your machine
with the TCP scan versus the raw socket scan

Submit raw_scanner.cc to the Dropbox when done

13

