
CSE 333: Systems Programming

Section 8

UDP Broadcast and Multicast

A very brief introduction…

No section next week (yay Thanksgiving!), so
we’ll do something on networking today

Expect a more formal introduction in the
next few lectures

11/15/12 2

TCP and UDP

TCP, or transmission control protocol:
 Guarantees in-order, at-most-once packet delivery
 Is connection-based. The server opens a socket to

which client(s) can connect and then transmit data

UDP, or user datagram protocol:
 Makes no guarantees about packet delivery
 Is connectionless, so no agent needs to “connect” to

another to send data

What are some scenarios where TCP is more
appropriate for communication? Vice versa?

11/15/12 3

UDP Broadcast

Allows sending of packets to a particular
network layer

This could mean all devices connected to the
local network, all devices at the University of
Washington, all devices connected to the
Internet, etc.

 Most ISPs will automatically filter broadcast packets

Can be useful, but multicast (slightly more fine-
grained) is generally more appropriate

11/15/12 4

UDP Multicast

Like UDP broadcast, but sent to a defined group
 Listening devices subscribe to a particular group,

such as “225.0.0.42”, and wait for messages
 The block of IPv4 addresses from 224.0.0.0 to

239.255.255.255 is reserved for multicast groups

 Sending devices publish broadcast messages to the
group

Useful for local discovery services, such as
iTunes’ library sharing, the first Starcraft’s
multiplayer lobby, and so forth

11/15/12 5

Receiving UDP packets

To listen for UDP packets, first open a socket
with the “socket” function (no need to
memorize any of this)

// Create a socket using AF_INET (IPv4) and

// SOCK_DGRAM (UDP).

int socketfd = socket(AF_INET, SOCK_DGRAM, 0);

if (socketfd < 0) {

 perror(“Unable to open socket”);

 return false;

}

11/15/12 6

Receiving UDP packets

Next bind the socket to a particular address
and port

struct sockaddr_in receive_addr;

// ... Set some parameters for receive_addr,

// such as the port and address.

if (bind(socketfd,

 reinterpret_cast<struct sockaddr *>(&receive_addr),

 sizeof(receive_addr)) != 0) {

 perror(“Failed to bind socket to port”);

 return false;

}

11/15/12 7

Receiving UDP packets

If using multicast (see receiver.cc in the
section code), subscribe to the multicast
group

struct ip_mreq mreq;

// ... Set the multicast group and local address.

// See “man 7 ip” for more details.

if (setsockopt(socketfd_, IPPROTO_IP,

 IP_ADD_MEMBERSHIP, &mreq,

 sizeof(mreq)) != 0) {

 perror("Kernel request to join multicast group failed);

 return false;

}

11/15/12 8

Receiving UDP packets

Finally, the exciting part. Receive messages!

string buffer;

buffer.resize(kBufferSize);

struct sockaddr_in from_addr;

socklen_t from_length = sizeof(from_addr);

// This call blocks until a message has been received over

// the network.

ssize_t num_bytes =

 recvfrom(socketfd_, &buffer[0], buffer.size(), 0,

 reinterpret_cast<struct sockaddr*>(&from_addr),

 &from_length);

// If num_bytes != -1, then we’ve received a message!

11/15/12 9

Sending multicast packets

Create a socket in the same way as before,
then set the broadcast option

int so_broadcast = true;

// See “man setsockopt” for more details on socket

// options.

if (setsockopt(socketfd, SOL_SOCKET, SO_BROADCAST,

 &so_broadcast, sizeof(so_broadcast)) != 0) {

 perror(“Failed to set broadcast option for socket”);

 return false;

}

11/15/12 10

Sending multicast packets

Send the message!

sockaddr_in broadcast_addr;

// ... (Set the broadcast address parameters, such as the

// multicast group).

if (sendto(socketfd_, buffer.c_str(), buffer_length, 0,

 reinterpret_cast<struct sockaddr*>(

 &broadcast_addr),

 sizeof(broadcast_addr)) != 0) {

 perror(“Failed to send message.”);

 return false;

}

11/15/12 11

Section exercise

 Finish implementing a chat program
 Write the code for constructing and sending messages

(broadcaster.cc) and receiving and parsing messages
(receiver.cc)

 As a suggestion, start by writing your receiver and then
test it out by sending messages to it with the sample
solution binary

 Make sure to validate received messages! I’ll be sending
out malicious packets to try to crash your programs

 Submit broadcaster.cc and receiver.cc to the Dropbox
when done

11/15/12 12

