CSE 333: Systems Programming

Section 8
UDP Broadcast and Multicast



11/15/12

A very brief infroduction...

No section next week (yay Thanksgiving!), so
we’ll do something on networking today

Expect a more formal introduction in the
next few lectures



11/15/12

TCP and UDP

TCP, or transmission control protocol:
* Guarantees in-order, at-most-once packet delivery

* Is connection-based. The server opens a socket to
which client(s) can connect and then transmit data

UDP, or user datagram protocol:
* Makes no guarantees about packet delivery

* Is connectionless, so no agent needs to “connect” to
another to send data

What are some scenarios where TCP is more
appropriate for communication? Vice versa?



11/15/12

UDP Broadcast

Allows sending of packets to a particular
network layer

>* This could mean all devices connected to the
local network, all devices at the University of

Washington, all devices connected to the
Internet, etc.

Most ISPs will automatically filter broadcast packets

* Can be useful, but multicast (slightly more fine-
grained) is generally more appropriate



UDP Multicast

Like UDP broadcast, but sent to a defined group

* Listening devices subscribe to a particular group,
such as “225.0.0.42”, and wait for messages

The block of IPv4 addresses from 224.0.0.0 to
239.255.255.255 is reserved for multicast groups

* Sending devices publish broadcast messages to the
group

Useful for local discovery services, such as
iTunes’ library sharing, the first Starcraft’s
multiplayer lobby, and so forth

11/15/12



Receiving UDP packets

To listen for UDP packets, first open a socket
with the “socket” function (no need to
memorize any of this)

// Create a socket using AF INET (IPv4) and
// SOCK DGRAM (UDP).
int socketfd = socket (AF INET, SOCK DGRAM, O0);
1f (socketfd < 0) {

perror (“Unable to open socket”);

return false;

11/15/12



Receiving UDP packets

Next bind the socket to a particular address
and port

struct sockaddr in receive addr;
// ... Set some parameters for receive addr,
// such as the port and address.
if (bind(socketfd,
reinterpret cast<struct sockaddr *>(&receive addr),
sizeof (receive addr)) != 0) {
perror (“Failed to bind socket to port”);

return false;

11/15/12



Receiving UDP packets

If using multicast (see receiver.cc in the
section code), subscribe to the multicast

group

struct ip mreq mreq;
// ... Set the multicast group and local address.
// See “man 7 ip” for more details.
1f (setsockopt (socketfd , IPPROTO IP,
IP ADD MEMBERSHIP, é&mreq,
sizeof (mreq)) != 0) {
perror ("Kernel request to join multicast group failed);
return false;

}

11/15/12



Receiving UDP packets

Finally, the exciting part. Receive messages!

string buffer;

buffer.resize (kBufferSize);

struct sockaddr in from addr;

socklen t from length = sizeof (from addr);

// This call blocks until a message has been received over

// the network.

ssize t num bytes =

recvfrom(socketfd , &buffer[0], buffer.size(), O,

reinterpret cast<struct sockaddr*>(&from addr),
&from length);

// If num bytes != -1, then we’ve received a message!

11/15/12



Sending multicast packets

Create a socket in the same way as before,
then set the broadcast option

int so broadcast = true;
// See “man setsockopt” for more details on socket
// options.
1f (setsockopt (socketfd, SOL SOCKET, SO BROADCAST,
&so broadcast, sizeof (so broadcast)) != 0) {

perror (“Failed to set broadcast option for socket”);
return false;

11/15/12 10



Sending multicast packets

Send the message!

sockaddr in broadcast addr;
// ... (Set the broadcast address parameters, such as the
// multicast group) .
1f (sendto (socketfd , buffer.c str(), buffer length, O,
reinterpret cast<struct sockaddr*> (
&broadcast addr),
sizeof (broadcast addr)) != 0) {
perror (“Failed to send message.”);

return false;

11/15/12

11



11/15/12

Section exercise

Finish implementing a chat program

Write the code for constructing and sending messages
(broadcaster.cc) and receiving and parsing messages
(receiver.cc)

As a suggestion, start by writing your receiver and then
test it out by sending messages to it with the sample
solution binary

Make sure to validate received messages! I'll be sending
out malicious packets to try to crash your programs ©
Submit broadcaster.cc and receiver.cc to the Dropbox
when done

12



