
CSE 333: Systems Programming

Section 8

UDP Broadcast and Multicast

A very brief introduction…

No section next week (yay Thanksgiving!), so
we’ll do something on networking today

Expect a more formal introduction in the
next few lectures

11/15/12 2

TCP and UDP

TCP, or transmission control protocol:
 Guarantees in-order, at-most-once packet delivery
 Is connection-based. The server opens a socket to

which client(s) can connect and then transmit data

UDP, or user datagram protocol:
 Makes no guarantees about packet delivery
 Is connectionless, so no agent needs to “connect” to

another to send data

What are some scenarios where TCP is more
appropriate for communication? Vice versa?

11/15/12 3

UDP Broadcast

Allows sending of packets to a particular
network layer

This could mean all devices connected to the
local network, all devices at the University of
Washington, all devices connected to the
Internet, etc.

 Most ISPs will automatically filter broadcast packets

Can be useful, but multicast (slightly more fine-
grained) is generally more appropriate

11/15/12 4

UDP Multicast

Like UDP broadcast, but sent to a defined group
 Listening devices subscribe to a particular group,

such as “225.0.0.42”, and wait for messages
 The block of IPv4 addresses from 224.0.0.0 to

239.255.255.255 is reserved for multicast groups

 Sending devices publish broadcast messages to the
group

Useful for local discovery services, such as
iTunes’ library sharing, the first Starcraft’s
multiplayer lobby, and so forth

11/15/12 5

Receiving UDP packets

To listen for UDP packets, first open a socket
with the “socket” function (no need to
memorize any of this)

// Create a socket using AF_INET (IPv4) and

// SOCK_DGRAM (UDP).

int socketfd = socket(AF_INET, SOCK_DGRAM, 0);

if (socketfd < 0) {

 perror(“Unable to open socket”);

 return false;

}

11/15/12 6

Receiving UDP packets

Next bind the socket to a particular address
and port

struct sockaddr_in receive_addr;

// ... Set some parameters for receive_addr,

// such as the port and address.

if (bind(socketfd,

 reinterpret_cast<struct sockaddr *>(&receive_addr),

 sizeof(receive_addr)) != 0) {

 perror(“Failed to bind socket to port”);

 return false;

}

11/15/12 7

Receiving UDP packets

If using multicast (see receiver.cc in the
section code), subscribe to the multicast
group

struct ip_mreq mreq;

// ... Set the multicast group and local address.

// See “man 7 ip” for more details.

if (setsockopt(socketfd_, IPPROTO_IP,

 IP_ADD_MEMBERSHIP, &mreq,

 sizeof(mreq)) != 0) {

 perror("Kernel request to join multicast group failed);

 return false;

}

11/15/12 8

Receiving UDP packets

Finally, the exciting part. Receive messages!

string buffer;

buffer.resize(kBufferSize);

struct sockaddr_in from_addr;

socklen_t from_length = sizeof(from_addr);

// This call blocks until a message has been received over

// the network.

ssize_t num_bytes =

 recvfrom(socketfd_, &buffer[0], buffer.size(), 0,

 reinterpret_cast<struct sockaddr*>(&from_addr),

 &from_length);

// If num_bytes != -1, then we’ve received a message!

11/15/12 9

Sending multicast packets

Create a socket in the same way as before,
then set the broadcast option

int so_broadcast = true;

// See “man setsockopt” for more details on socket

// options.

if (setsockopt(socketfd, SOL_SOCKET, SO_BROADCAST,

 &so_broadcast, sizeof(so_broadcast)) != 0) {

 perror(“Failed to set broadcast option for socket”);

 return false;

}

11/15/12 10

Sending multicast packets

Send the message!

sockaddr_in broadcast_addr;

// ... (Set the broadcast address parameters, such as the

// multicast group).

if (sendto(socketfd_, buffer.c_str(), buffer_length, 0,

 reinterpret_cast<struct sockaddr*>(

 &broadcast_addr),

 sizeof(broadcast_addr)) != 0) {

 perror(“Failed to send message.”);

 return false;

}

11/15/12 11

Section exercise

 Finish implementing a chat program
 Write the code for constructing and sending messages

(broadcaster.cc) and receiving and parsing messages
(receiver.cc)

 As a suggestion, start by writing your receiver and then
test it out by sending messages to it with the sample
solution binary

 Make sure to validate received messages! I’ll be sending
out malicious packets to try to crash your programs 

 Submit broadcaster.cc and receiver.cc to the Dropbox
when done

11/15/12 12

