
CSE 333: Systems Programming

Section 5

Template specialization

Templates versus generics

C++ templates differ from Java generics in an
important way—what is it?

Hint: If I construct LinkedList<Integer> and
LinkedList<Double> in Java, how many instances
of the List class have I generated? What about
list<int> and list<double> in C++?

This is an important distinction for template
specialization, as it turns out

11/1/12 2

Template specialization

 Template specialization allows for different versions
of the “same” templated class, struct, or function

 The general pattern for functions is:

// Original templated function
template<typename T>
T func(T arg1, T arg2) { ... }

// Specialized function for ints
template<>
int func(int arg1, int arg2) { ... }

Which version of func gets invoked from a call to
func(1, 2.3)? What is “T” taken to be in this case?

11/1/12 3

Template specialization

// Original templated function

template<typename T>

T func(T arg1, T arg2) { ... }

// Specialized function for ints

template<>

int func(int arg1, int arg2) { ... }

 In the specialized version of func, we’ve replaced all
occurrences of T with int. Note that the “typename T”
is gone in the specialized version too

 The body of func can differ between the two functions,
and multiple versions of the code are generated

11/1/12 4

Template specialization

Some examples of when template
specialization of functions can be useful:

Defining a “compare” function

Defining a “min” or “max” function

Defining a semi-generic read or write function
(see my post on the discussion board about
homework 3)

… and many more

11/1/12 5

Class/struct specialization

Class and struct template specialization is
similar to specialization of functions:

template<typename T>

class Example {

 ...

};

template<>

class Example<double> {

 ...

};

Here we’ve declared a specialized version of the
Example class for doubles

11/1/12 6

Class/struct specialization

The bad news is that functions and member
variables are not shared 

template<typename T>

class Example {

 public:

 T foo() { ... }

};

template<>

class Example<double> {

 public:

 // No foo here unless we declare it again.

};

11/1/12 7

Class/struct specialization

Solution: Have template specializations of a
class share a non-templatized base class that
has templated functions

 Let’s not think about this right now…

11/1/12 8

Class function specialization

 It’s possible for non-templated classes to have
templated functions (we’ll see this in the
exercise)

To specialize these functions, declare the
specialization outside of the class

class Example {

 public:

 template<typename T> T func() { ... }

};

template<>

double Example::func() { ... }

11/1/12 9

Partial specialization

 Classes and structs (but not functions) also allow for
partial specialization, which looks like this:

template<typename T1, typename T2>

class Example {

 ...

};

// Here one template argument is supplied

// but not the other

template<typename T2>

class Example<float, T2> {

 ...

};

11/1/12 10

Wrapup

That was a whirlwind tour, but hopefully it
gave you more of a taste of what templates
can do

Some other template-related topics:

Default template parameters (see STL classes
such as vector, for instance)

Template templates (this allows templated
classes as template parameters)

11/1/12 11

Section exercise

ByteBuffer is an untyped storage class that
provides (and requires) typed insertions and
accesses

It is useful for cases where the type of the
data being stored isn’t known until runtime

One can create a vector of ByteBuffers that store
arbitrary types, for example

The ByteBuffer’s internal buffer grows
dynamically as values are inserted

11/1/12 12

Section exercise

Demo time! (See bytebuffer_example.cc and
bytebuffer_example_solution)

11/1/12 13

Section exercise

Your task is to write some function
specializations for ByteBuffer<string>

The content of strings should be laid out
contiguously in the buffer. Use the offset fields
of the class to keep track of where to insert next
and where data for particular indices is located

As usual, submit the code (bytebuffer.h) to the
Dropbox and leave a comment on the Dropbox
with your partner’s name

11/1/12 14

