
CSE 333: Systems Programming

Section 5

Operator overloading

Operator overloading

C++ allows for overloading of operators such
as +, -, *, /, ->, [], and so forth

This is extremely powerful, but with great power
comes great responsibility

To overload or define an operator, declare
operator+, operator-, etc. as a function
inside a class (or sometimes globally)

Let’s look at an example…

10/25/12 2

Operator overloading

class IntArray {
 public:
 inline IntArray(int len)
 : array_(new int[len]), len_(len) {}
 inline IntArray(const IntArray& int_array)
 : array_(new int[int_array.len_]), len_(int_array.len_) {
 memcpy(array_, int_array.array_, sizeof(int) * len_);
 }
 ~IntArray() { delete array_; }
 inline const int& operator[](int i) const {
 range_check(i);
 return array_[i];
 }
 inline int& operator[](int i) {
 range_check(i);
 return array_[i];
 }
 inline int length() const { return len_; }

 private:
 inline void range_check(int i) const {
 assert(i >= 0 && i < len_);
 }
 int* array_;
 const int len_;
};

10/25/12 3

Operator overloading

We just defined a “safe” array class for
storing integers. We can now do:

IntArray arr(10);

for (int i = 0; i < arr.length(); ++i) {

 arr[i] = i; // okay

}

arr[15] = -1; // assertion failure!

Our range_check() function protects against
indices that are out of bounds

10/25/12 4

Operator overloading

Let’s say that we want to implement + and –
operators that perform pairwise addition and
subtraction

We can write declarations for them as:

IntArray operator+(
 const IntArray& int_array) const { ... }
IntArray operator-(
 const IntArray& int_array) const { ... }

 And now if we have two IntArrays called arr1 and arr2,
we can compute arr1 + arr2 and arr1 - arr2

10/25/12 5

Operators for built-in types

 In a global scope (i.e. outside of the class), we
can define operators for built-in types

To facilitate the << operator for IntArray for use
with streams, we can declare the following
outside of the class in the header file:

ostream& operator<<(
 ostream& o, IntArray int_array;

The same technique can be applied to other
operators as well, such as operator+, operator-,
etc.

10/25/12 6

Operator misuse

Operator overloading can easily be misused,
unfortunately. For instance, I could define
the following operator inside IntArray:

double operator+(const string& str) const;

 This would allow me to write:

IntArray arr(5);

double d = arr + "hello";
// Please, please do not do this

10/25/12 7

Operator design

Now let’s imagine that we are writing a hash table
in C++ that maps uint64_ts to void* pointers and
we want to define operator[] to access values
 If tab is an instance of this class, I want to be able to write

tab[key] = val to insert val under key

 In the future, I should be able retrieve it via tab[key] or to
overwrite it with a different value

How should we declare operator[], and how should
we implement it? Keep in mind that the given key
may or may not be present

10/25/12 8

Section assignment

 In section today, you will flesh out a three-
dimensional vector class that stores doubles

 The provided code will not compile until you at
least implement the constructors

Uncomment the relevant test code as you
implement features to see if your code works

 Submit vec3d.h to the Dropbox once you finish.
Leave a comment on the Dropbox with your
partner’s name!

10/25/12 9

