
CSE 333: Systems Programming

Section 5

Operator overloading

Operator overloading

C++ allows for overloading of operators such
as +, -, *, /, ->, [], and so forth

This is extremely powerful, but with great power
comes great responsibility

To overload or define an operator, declare
operator+, operator-, etc. as a function
inside a class (or sometimes globally)

Let’s look at an example…

10/25/12 2

Operator overloading

class IntArray {
 public:
 inline IntArray(int len)
 : array_(new int[len]), len_(len) {}
 inline IntArray(const IntArray& int_array)
 : array_(new int[int_array.len_]), len_(int_array.len_) {
 memcpy(array_, int_array.array_, sizeof(int) * len_);
 }
 ~IntArray() { delete array_; }
 inline const int& operator[](int i) const {
 range_check(i);
 return array_[i];
 }
 inline int& operator[](int i) {
 range_check(i);
 return array_[i];
 }
 inline int length() const { return len_; }

 private:
 inline void range_check(int i) const {
 assert(i >= 0 && i < len_);
 }
 int* array_;
 const int len_;
};

10/25/12 3

Operator overloading

We just defined a “safe” array class for
storing integers. We can now do:

IntArray arr(10);

for (int i = 0; i < arr.length(); ++i) {

 arr[i] = i; // okay

}

arr[15] = -1; // assertion failure!

Our range_check() function protects against
indices that are out of bounds

10/25/12 4

Operator overloading

Let’s say that we want to implement + and –
operators that perform pairwise addition and
subtraction

We can write declarations for them as:

IntArray operator+(
 const IntArray& int_array) const { ... }
IntArray operator-(
 const IntArray& int_array) const { ... }

 And now if we have two IntArrays called arr1 and arr2,
we can compute arr1 + arr2 and arr1 - arr2

10/25/12 5

Operators for built-in types

 In a global scope (i.e. outside of the class), we
can define operators for built-in types

To facilitate the << operator for IntArray for use
with streams, we can declare the following
outside of the class in the header file:

ostream& operator<<(
 ostream& o, IntArray int_array;

The same technique can be applied to other
operators as well, such as operator+, operator-,
etc.

10/25/12 6

Operator misuse

Operator overloading can easily be misused,
unfortunately. For instance, I could define
the following operator inside IntArray:

double operator+(const string& str) const;

 This would allow me to write:

IntArray arr(5);

double d = arr + "hello";
// Please, please do not do this

10/25/12 7

Operator design

Now let’s imagine that we are writing a hash table
in C++ that maps uint64_ts to void* pointers and
we want to define operator[] to access values
 If tab is an instance of this class, I want to be able to write

tab[key] = val to insert val under key

 In the future, I should be able retrieve it via tab[key] or to
overwrite it with a different value

How should we declare operator[], and how should
we implement it? Keep in mind that the given key
may or may not be present

10/25/12 8

Section assignment

 In section today, you will flesh out a three-
dimensional vector class that stores doubles

 The provided code will not compile until you at
least implement the constructors

Uncomment the relevant test code as you
implement features to see if your code works

 Submit vec3d.h to the Dropbox once you finish.
Leave a comment on the Dropbox with your
partner’s name!

10/25/12 9

