
CSE 333: Systems Programming

Section 4

Non-buffered IO and common bugs

Non-buffered IO

So far we’ve mostly used fopen, fread, fwrite,
and family

These return and use FILE* pointers and
maintain per-file buffers

For the current assignment and this section,
we’ll use open, read, write, and family

These return and use file descriptors (ints) and
do not maintain buffers

10/18/12 2

Non-buffered IO

Reasons to use non-buffered IO

Can implement different buffering/caching
strategies on top of read and write

There is no equivalent of fread and fwrite for
network and other IO devices aside from in third-
party libraries

open, read, write, etc. translate directly to
system calls, hence there is more explicit control

10/18/12 3

Non-buffered IO

Syntactic differences

 read and write take just the number of bytes as a
parameter as opposed to fread and fwrite, which
also take the number of elements

open takes flags and a mode as integers, as
opposed to a mode string as with fopen

 For example, use the flag O_CREAT to force file
creation and the mode S_IRUSR | S_IWUSR to set the
file permissions to 0600

 See man 2 open for the full details

10/18/12 4

Common bugs

Joe, Steve and I have seen some common
bugs and related misconceptions throughout
the course so far, so let’s go over some of
them

10/18/12 5

Common bugs

What is wrong with the following snippet of
code? How do we fix it?

// Returns a copy of the middle

// third of the given string.

char* MiddleThird(const char* str) {

 size_t len = sizeof(str);

 char* copy;

 strncpy(copy, &str[len / 3], len / 3);

 return copy;

}

10/18/12 6

Common bugs

What about in this scenario? Again, how can we
fix the problem(s)?

typedef struct {
 int a, b;
} Payload;

void StorePayload(LinkedList list,
 int a, int b) {
 Payload payload;
 payload.a = a;
 payload.b = b;
 Assert333(PushLinkedList(list, &payload));
}

10/18/12 7

Common bugs

What about here?

// Payload is defined as before.

void RetrieveHeadPayload(

 LinkedList list, Payload payload) {

 if (NumElementsInLinkedList(list) == 0)

 return;

 LLIter iter = LLMakeIterator(list);

 Assert333(iter != NULL);

 LLIteratorGetPayload(iter, &payload);

}

10/18/12 8

Assignment for today

Gain some experience with non-buffered IO

Recognize and fix bugs related to improper use
of string functions, stack-allocation versus heap-
allocation, and incorrect error handling

git pull to get the code; submit to the Dropbox

Your solution should have no errors under
Valgrind and should match the output of the
sample solution, assuming mine is correct

10/18/12 9

