
CSE 333: Systems Programming

Section 2

Memory ownership and GDB

Section format changes

 I’ll go over some material, ask questions along the
way, and then you’ll do an exercise in teams of two

 Turn in solution file(s) to Dropbox for the section by
11:59pm of the day of section
 One submission per group; leave a comment with your

partner’s name

 It should be possible to finish everything in section

 If you miss a section, upload your code/other files to
the Dropbox and email me the answers to the
questions asked in the section slides

10/4/12 2

Memory ownership

Good design practice: identify which agents
own which heap-allocated memory

Agents that own heap-allocated memory are
responsible for freeing it unless they transfer
ownership

Ownership and ownership transfer should be
explicit
 What can we do in to make memory ownership and

ownership transfer explicit or at least more obvious?

10/4/12 3

Memory ownership

Example: I want to write a function that
processes some work and returns whether
all processing succeeds

doWork should somehow surface an error
through the error parameter if it fails

bool doWork(WorkItem* work_items,

 int num_items, ?? error, ...);

10/4/12 4

Memory ownership

bool doWork(WorkItem* work_items,

 int num_items, ?? error, ...);

Some possibilities:
 doWork heap-allocates an error string and returns a

pointer to it in *error (i.e. make error of type
char**)

 The caller heap- or stack-allocates an error string
and passes it to doWork (i.e. make error of type
char* and pass its length as well)

What are the tradeoffs between these
approaches with respect to memory
management? Any other possibilities?

10/4/12 5

Using GDB

GDB is the Swiss army knife of debugging

GDB lets you examine the state of a running
program, watch its behavior, and even
modify its state

Basic usage:
$ gdb ./program-name

gdb) start

... (set breakpoints)

gdb) continue

10/4/12 6

Using GDB

 Use the “p” (print) command within GDB to print out values of
variables and their addresses

 Use the “b” (breakpoint) command to set a breakpoint at a
particular line/file, e.g. “b 79” to break execution at line 79 in the
current file

 Use the “c” (continue) command to resume execution after
hitting a breakpoint

 Use the “d” (delete breakpoint) command to remove
breakpoints, e.g. “d 1” to delete breakpoint 1

 Use the “list” command to output the code with line numbers in
the current file. “list [line-#]” will list code from the given line;
press Enter to see more code

10/4/12 7

