
CSE 333: Systems Programming

Section 2

Memory ownership and GDB

Section format changes

 I’ll go over some material, ask questions along the
way, and then you’ll do an exercise in teams of two

 Turn in solution file(s) to Dropbox for the section by
11:59pm of the day of section
 One submission per group; leave a comment with your

partner’s name

 It should be possible to finish everything in section

 If you miss a section, upload your code/other files to
the Dropbox and email me the answers to the
questions asked in the section slides

10/4/12 2

Memory ownership

Good design practice: identify which agents
own which heap-allocated memory

Agents that own heap-allocated memory are
responsible for freeing it unless they transfer
ownership

Ownership and ownership transfer should be
explicit
 What can we do in to make memory ownership and

ownership transfer explicit or at least more obvious?

10/4/12 3

Memory ownership

Example: I want to write a function that
processes some work and returns whether
all processing succeeds

doWork should somehow surface an error
through the error parameter if it fails

bool doWork(WorkItem* work_items,

 int num_items, ?? error, ...);

10/4/12 4

Memory ownership

bool doWork(WorkItem* work_items,

 int num_items, ?? error, ...);

Some possibilities:
 doWork heap-allocates an error string and returns a

pointer to it in *error (i.e. make error of type
char**)

 The caller heap- or stack-allocates an error string
and passes it to doWork (i.e. make error of type
char* and pass its length as well)

What are the tradeoffs between these
approaches with respect to memory
management? Any other possibilities?

10/4/12 5

Using GDB

GDB is the Swiss army knife of debugging

GDB lets you examine the state of a running
program, watch its behavior, and even
modify its state

Basic usage:
$ gdb ./program-name

gdb) start

... (set breakpoints)

gdb) continue

10/4/12 6

Using GDB

 Use the “p” (print) command within GDB to print out values of
variables and their addresses

 Use the “b” (breakpoint) command to set a breakpoint at a
particular line/file, e.g. “b 79” to break execution at line 79 in the
current file

 Use the “c” (continue) command to resume execution after
hitting a breakpoint

 Use the “d” (delete breakpoint) command to remove
breakpoints, e.g. “d 1” to delete breakpoint 1

 Use the “list” command to output the code with line numbers in
the current file. “list [line-#]” will list code from the given line;
press Enter to see more code

10/4/12 7

