
CSE 333: Systems Programming

Section 1

Introduction, structs, arrays

About your TA

My name is Elliott, and I’m a fifth-year
masters student

I enjoy operating systems, distributed
systems, and programming in C++

I interned twice at Google with the Dremel
team, which develops a SQL server for
querying large data sets and returning
results real time

9/27/12 2

About your TA

Office hours:

Monday 12:30 to 1:20 in CSE 002

Wednesday 12:30 to 1:20 in CSE 216

Whenever I’m in 002 (fairly often during the
week)

In general, seek help through the GoPost
before sending email—other students likely
have the same question

9/27/12 3

Section format

Some lecture material/discussion of projects

Lab exercise

A short coding exercise related to class material

Must compile without warnings and pass
valgrind without memory leaks

Work with a partner if you like

 Show a TA your solution to receive credit for it

9/27/12 4

Section format

Section question

Come up with an answer to one of the questions
listed at the end of this slide deck

Tell the TAs your answer when you show them
your lab exercise solution

9/27/12 5

Section format

3 points possible per section
1 for attending section

1 for having a lab exercise solution without
compiler warnings or memory leaks

1 for answering one of the section questions

If you miss a section, you can email Chuong
and me your code along with answers to all
of the section questions to receive 2/3
points

9/27/12 6

Ex0/hw0

Success?

Some suggestions for exercises

 ”Good style” for this class is based on the Google
style guide, so follow it when in doubt

Keep it short and simple—dense code with a few
comments sprinkled in

Expect exercise grades/feedback prior to the
next lecture after turning them in

9/27/12 7

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Structs

Used for encapsulating data

Can contain primitive types (int, double,
etc.), arrays, other structs, and unions,
among other types

Accesses are made through the ‘->’ operator
for pointers to structs and ‘.’ for values

More on this later; just need basics for the
lab exercise

9/27/12 8

Structs

 Example:
typedef struct {
 int a, b;
} sample;

int main(int argc, char* argv[]) {
 sample s;
 s.a = 10;
 s.b = 5;
 sample* s_ptr = &s;
 printf(“s.a is %d and s.b is %d\n”, s.a,
 s.b);
 printf(“s_ptr->a is %d and s_ptr->b is %d\n”,
 s.a, s.b);
 return 0;
}

9/27/12 9

Arrays

 Just a block of data of a particular type and size

Raw pointers can be treated as arrays and vice
versa, with some minor caveats

int* a = (int*) malloc(sizeof(int) * 3);
int* b = (int*) malloc(sizeof(int));
int c[5] = {0}; // stack-allocated array
a[2] = 6;
b[0] = 4;
c[2] = 2;
*a = c[2]; // what does this do?
free(a);
free(b);

9/27/12 10

Lab exercise!

Play around with arrays and get a brief
introduction to structs

Create a way to access arrays “safely” through
bounds-checking

Clone the section repository to get the skeleton
code (pull up this slide deck on your laptop to
copy/paste instead)

git clone

ssh://[username]@attu.cs.washington.edu/projects/instr/12au/cse333/

section/central.git

9/27/12 11

Lab exercise questions

The code for the SafeArray implementation
passes the SafeArray struct by value. What are
the benefits of passing SafeArray by value (if
any)? What are the drawbacks (if any)?

What are the performance implications of using
these functions for safely accessing arrays?
Why does Java, for example, perform bounds-
checking on arrays while C does not?

9/27/12 12

