
CSE 333: Systems Programming

Section 1

Introduction, structs, arrays

About your TA

My name is Elliott, and I’m a fifth-year
masters student

I enjoy operating systems, distributed
systems, and programming in C++

I interned twice at Google with the Dremel
team, which develops a SQL server for
querying large data sets and returning
results real time

9/27/12 2

About your TA

Office hours:

Monday 12:30 to 1:20 in CSE 002

Wednesday 12:30 to 1:20 in CSE 216

Whenever I’m in 002 (fairly often during the
week)

In general, seek help through the GoPost
before sending email—other students likely
have the same question

9/27/12 3

Section format

Some lecture material/discussion of projects

Lab exercise

A short coding exercise related to class material

Must compile without warnings and pass
valgrind without memory leaks

Work with a partner if you like

 Show a TA your solution to receive credit for it

9/27/12 4

Section format

Section question

Come up with an answer to one of the questions
listed at the end of this slide deck

Tell the TAs your answer when you show them
your lab exercise solution

9/27/12 5

Section format

3 points possible per section
1 for attending section

1 for having a lab exercise solution without
compiler warnings or memory leaks

1 for answering one of the section questions

If you miss a section, you can email Chuong
and me your code along with answers to all
of the section questions to receive 2/3
points

9/27/12 6

Ex0/hw0

Success?

Some suggestions for exercises

 ”Good style” for this class is based on the Google
style guide, so follow it when in doubt

Keep it short and simple—dense code with a few
comments sprinkled in

Expect exercise grades/feedback prior to the
next lecture after turning them in

9/27/12 7

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

Structs

Used for encapsulating data

Can contain primitive types (int, double,
etc.), arrays, other structs, and unions,
among other types

Accesses are made through the ‘->’ operator
for pointers to structs and ‘.’ for values

More on this later; just need basics for the
lab exercise

9/27/12 8

Structs

 Example:
typedef struct {
 int a, b;
} sample;

int main(int argc, char* argv[]) {
 sample s;
 s.a = 10;
 s.b = 5;
 sample* s_ptr = &s;
 printf(“s.a is %d and s.b is %d\n”, s.a,
 s.b);
 printf(“s_ptr->a is %d and s_ptr->b is %d\n”,
 s.a, s.b);
 return 0;
}

9/27/12 9

Arrays

 Just a block of data of a particular type and size

Raw pointers can be treated as arrays and vice
versa, with some minor caveats

int* a = (int*) malloc(sizeof(int) * 3);
int* b = (int*) malloc(sizeof(int));
int c[5] = {0}; // stack-allocated array
a[2] = 6;
b[0] = 4;
c[2] = 2;
*a = c[2]; // what does this do?
free(a);
free(b);

9/27/12 10

Lab exercise!

Play around with arrays and get a brief
introduction to structs

Create a way to access arrays “safely” through
bounds-checking

Clone the section repository to get the skeleton
code (pull up this slide deck on your laptop to
copy/paste instead)

git clone

ssh://[username]@attu.cs.washington.edu/projects/instr/12au/cse333/

section/central.git

9/27/12 11

Lab exercise questions

The code for the SafeArray implementation
passes the SafeArray struct by value. What are
the benefits of passing SafeArray by value (if
any)? What are the drawbacks (if any)?

What are the performance implications of using
these functions for safely accessing arrays?
Why does Java, for example, perform bounds-
checking on arrays while C does not?

9/27/12 12

