CSE 333

Lecture 1 - Intro, C refresher

Steve Gribble

Department of Computer Science & Engineering

University of Washington

+S

CSE333 lect intro // 09-24-12 // gribble

Welcomel!

Today’s goals:
- introductions
- course Syllabus

- quick C refresher

CSE333 lect intro // 09-24-12 // gribble

Us

Steve Gribble

Elliott Brossard

Chuong Dao

CSEB33 lec1 intro // 09-24-12 // gribble

Overloading

The overload signup sheet is down here
- come sign up after lecture
- Il hand the sheet in to the ugrad advisors

- by Friday, they’ll let me (and you) know who gets in

CSE333 lect intro // 09-24-12 // gribble

Welcomel!

Today’s goals:
- Introductions
- course syllabus

- quick C refresher

CSE333 lect intro // 09-24-12 // gribble

Course map: 100,000 foot view

L o Java
C application C++ application application
C standard library C++ STL / boost/ JRE

(glibc) standard library
OS / app interface

(systemcalls) T TTTTTTTTTTTmmmmmmmmmsmmmmmmmee

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

CSE333 lect intro // 09-24-12 // gribble

Systems programming

The programming skills, engineering discipline, and
knowledge you need to build a system

- programming:. C/ C++
- discipline: testing, debugging, performance analysis

- knowledge: long list of interesting topics

» concurrency, OS interfaces and semantics, techniques for
consistent data management, distributed systems algoritnms, ...

» most important: a deep understanding of the “layer below”

* quiz: is data safely on disk after a “write()” system call returns?

CSE333 lect intro // 09-24-12 // gribble

Discipline?!”?

Cultivate good habits, encourage clean code

coding style conventions

unit testing, code coverage testing, regression testing

documentation (code comments, design docs)

code reviews

Will take you a lifetime to learn

- but oh-so-important, especially for systems code

» avoid write-once, read-never code

CSE333 lect intro // 09-24-12 // gribble

What you will be doing

Attending lectures and sections

- lecture: ~29 of them, MWEF in this room

- sections: ~10 of them, Thu (8:30 in MGH or 9:30 in SAV)
Doing programming projects

- 5 of them, successively building on each other

- includes C, C++; file system, network

Doing programming exercises

- one per lecture, due before the next lecture begins

- coarse-grained grading (0,1,2,3)

CSE333 lect intro // 09-24-12 // gribble

—Xams

I’'m open to alternatives....

- none
- midterm only

- midterm + final

What’s your preference?

CSE333 lect intro // 09-24-12 // gribble

Course calendar

Linked off of the course web page
- master schedule for the class

- will contain links to:
» lecture slides
» code discussed in lectures
» assignments, exercises (including due dates)

» optional “self-exercise” solutions

CSE333 lect intro // 09-24-12 // gribble

Welcomel!

Today’s goals:
- Introductions
- course Syllabus

- quick C refresher

CSE333 lect intro // 09-24-12 // gribble

C THE

Created in 1972 by Dennis Ritchie SROCRAMMING

LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

- designed for creating system software
- portable across machine architectures
- most recently updated in 1999 (C99) and 2011 (C11)
Characteristics

- low-level, smaller standard library than Java

- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

CSE333 lect intro // 09-24-12 // gribble

C workflow

execute,
S(;:Jrce debug,
1eS , profile,
(.c, .h) object
files
Editor (-0) |
(emacs, vi) compile executable Process
edit link load
= D
or IDE
(eclipse) , ,
libZ .a libec.so
statically linked shared

libraries libraries

CSE333 lect intro // 09-24-12 // gribble

assembly source file

machine code
(dosum.o)

C source file

(dosum.c)

(dosum.s)

e

80483b0: 55

89 e5 8b 45

Oc 03 45 08
5d c3

~

-rom C to machine code

int dosum(int i, int j) {
return i+j;

} 'l
I
C compiler (gcc -S)
I
4 N
dosum:
pushl %ebp
movl 3esp, %ebp
movl 12 (%ebp), %eax
addl 8 (%ebp), %eax
popl %ebp
ret
o J

assembler (as)

CSE333 lect intro // 09-24-12 // gribble

SKipping assembly language

Most C compilers generate .o files (machine code) directly

- 1.e., without actually saving the readable .s assembly file

[N O vy E R Py
\ /

gcc -C

Multi-file C programs

C source file
(dosum.c)

C source file
(sumnum.c)

int dosum(int i, int j) {
return i+j;

}

p
#include <stdio.h>

int dosum(int i, int j

this “prototype” of

dosum() tells gcc

about the types of
dosum’s arguments
and its return value

dosum() is

int main(int argc har **argv) {
printf("%d\n",,)) ;
return O;

}

-

— implemented
iIN suMNUM.C

CSE333 lect intro // 09-24-12 // gribble

Multi-file C programs

C source file
(dosum.c)

C source file
(sumnum.c)

int dosum(int i, int j) {
return i+j;

}

-

#include <stdio.ﬂ2::F—

int dosum(int i, int j);

a(int argc, char **argv) {

why do we need
this #include?

@o rd\n'__dosum(1,2)); where is the
Ttn 0; implementation
} of printf?

CSE333 lect intro // 09-24-12 // gribble

Compiling multi-file programs

Multiple object files are linked to produce an executable
- standard libraries (libc, crtl, ...) are usually also linked in

- alibrary is just a pre-assembled collection of .o files

Id

[dosum.c}—- gcc-c = {dosum.o}\\\\
(or gce)

sumnum. C gCC -C - SUmMNuUMm. O / I
[libraries}

— sumnum

(e.g., 1libc)

CSE333 lect intro // 09-24-12 // gribble

Object files

sumnum.o, dosum.o are object files

- each contains machine code produced by the compiler
- each might contain references to external symbols

» variables and functions not defined in the associated .c file

» e.g., Sumnum.o contains code that relies on printf() and dosum(),
but these are defined in libc.a and dosum.o, respectively

- linking resolves these external symbols while smooshing
together object files and libraries

CSE333 lect intro // 09-24-12 // gribble

Let’s dive into C itself

Things that are the same as Java

syntax for statements, control structures, function calls

types: int, double, char, long, float

type-casting syntax: float x = (float) 5 / 3;

expressions, operators, precedence

4+ = = 4= = *= /=

o

+ - x /

o©

scope (local scope is within a set of { } braces)

comments: /* comment */ // comment

CSE333 lect intro // 09-24-12 // gribble

integer types
- char, int

floating point
- float, double

modifiers

short [int]

long [int, double]

signed [char, int]

unsigned [char, int]

Primitive types in C

see sizeofs.c

bytes

bytes

type (32 bit) | (64 bit) 32 bit range printf
char 1 1 [0, 255] %cC
short int 2 2 [-32768,32767] %hd
unsigned short int 2 2 [0, 65535] %hu
n HEREN
unsigned int 4 4 [0, 4294967295] %U
long int 4 8 [2211447742%121478] %Id
onglongint__ |8 | & | tezEsmaoseeieme | g
float 4 4 approx [10-38, 103] %f
double 8 8 approx [10-308, 1030] %lf
long double 12 16 approx [10-4932, 104932] %Lf
pointer 4 8 [0, 4294967295] %p

CSE333 lect intro // 09-24-12 // gribble

C99 extended integer types

Solves the conundrum of “how big is a long int?”

#include <stdint.h>

void foo(void) {

int8 t w; // exactly 8 bits, signed
intl6_t x; // exactly 16 bits, signed
int32 t y; // exactly 32 bits, signed
int64 t z; // exactly 64 bits, signed
uint8 t a; // exactly 8 bits, unsigned
...etc.

CSE333 lect intro // 09-24-12 // gribble

Similar to Java...

- variables
» C99: don’t have to declare at start of a function or block

» need not be initialized before use (gcc -Wall will warn)

p
#include <stdio.h>

int main(int argc, char **argv) {
int x, y = 5; // note x is uninitialized!
long z = x+y;

printf("z is '$1d'\n", z); // what’s printed?
varscope.cC {

int y = 10;

printf("y is '3d'\n", y);
}
int w = 20; // ok in c99
printf("y is '%sd', w is '%d'\n", y, w);
return O;

Similar to Java...

const
- a qualifier that indicates the variable’s value cannot change
- compiler will issue an error if you try to violate this

- why is this qualifier useful?

4 I
#include <stdio.h>

int main(int argc, char **argv) {

const double MAX GPA = 4.0;
COﬂSty.C
printf ("MAX GPA: %g\n", MAX GPA);
MAX GPA = 5.0; // illegal!
return O;

}
\ J

CSE333 lect intro // 09-24-12 // gribble

Similar to Java...

for loops

- C99: can declare variables in the loop header

if/else, while, and do/while loops

- C99: bool type supported, with #include <stdbool.h>

- any type can be used; 0 means false, everything else true

loopy.c

-

-

int 1i;

for (i = 0; i < 100; i++) {
if (1 % 10 == 0) {
printf("i: %d\n", i);
}
}

~

CSE333 lect intro // 09-24-12 // gribble

Similar to Java...

parameters / return value

- C always passes
arguments by value

- “pointers”
» lets you pass by reference
» more on these soon
» least intuitive part of C

» very dangerous part of C

pointy.c

p
void add_pbv(int c¢) {

c += 10;
printf("pbv c: %d\n", c);
}

void add_pbr(int *c) {

*c¢ += 10;

printf ("pbr *c: %d\n", *c);
}

int main(int argc, char **argv) {
int x = 1;

printf("x: %d\n", x);

add_pbv(x);
printf("x: %d\n", x);

add_pbr (&x);
printf("x: %d\n", x);

return O;

Very different than Java

arrays
- Just a bare, contiguous block of memory of the correct size
- an array of 10 ints requires 10 x 4 bytes = 40 bytes of memory
arrays have no methods, do not know their own length
- C doesn’t stop you from overstepping the end of an array!!

- many, many security bugs come from this

CSE333 lect intro // 09-24-12 // gribble

Very different than Java

strings
- array of char

- terminated by the NULL character \O’

- are not objects, have no methods; string.h has helpful utilities

X h|le|l|1l|o]|\n

\O

{ char *x = "hello\n”;

J

CSE333 lect intro // 09-24-12 // gribble

Very different than Java

errors and exceptions

- C has no exceptions (no try / catch)

- errors are returned as integer error codes from functions
- makes error handling ugly and inelegant

crashes

- if you do something bad, you’ll end up spraying bytes around
memory, hopefully causing a “segmentation fault” and crash

objects

- there aren’t any; struct is closest feature (set of fields)

CSE333 lect intro // 09-24-12 // gribble

Very different than Java

memory management

you must to worry about this; there is no garbbage collector

local variables are allocated off of the stack

» freed when you return from the function

global and static variables are allocated in a data segment

» are freed when your program exits

you can allocate memory in the heap segment using malloc()
» you must free malloc’ed memory with freg()

» failing to free is a leak, double-freeing is an error (hopefully crash)

CSE333 lect intro // 09-24-12 // gribble

Very different than Java

Libraries you can count on

C has very few compared to most other languages

Nno built-in trees, hash tables, linked lists, sort , etc.

you have to write many things on your own
» particularly data structures

» error prone, tedious, hard to build efficiently and portably

this is one of the main reasons C is a much less productive
language than Java, C++, python, or others

CSE333 lect intro // 09-24-12 // gribble

-or Wednesday

Homework #0 Is due:

http://www.cs.washington.edu/education/courses/cse333/12au/assignments/hw0/hwO.html

Exercise O is due:

- http://www.cs.washington.edu/education/courses/cse333/12au/exercises/ex0.html

CSE333 lect intro // 09-24-12 // gribble

See you on Wednesday!

CSE333 lect intro // 09-24-12 // gribble

