

Thread Pools
A Useful Tool for Easy Concurrency

CSE333 Section 9 (5/26/11)
Colin Gordon (csgordon@cs)

What's a Thread Pool?

● An abstraction for a group of threads where
● Some number of threads are always present,

sometimes idle
● Clients drop work items into a queue, and worker

threads pick them up when ready

● Advantages:
● Don't have to manually manage threads
● When the tasks are independent, it's safe easy

parallelism
● Usually little per-thread startup cost

Why Not Just Non-blocking IO?

● How many tasks can a single thread using
select() or poll() manage concurrently?
● Can track many
● Can only run one at a time!

– If select() returns more than 1 ready file descriptor, some
task that could run sits idle while the first descriptor is
handled

Who Uses Thread Pools?

● Everyone!
● Microsoft

– WIN32 ThreadPool API
– C#/.NET System.Threading.ThreadPool

● Apple
– Grand Central Dispatch

● Linux
– Everyone writes their own

● SunOracle
– java.util.concurrent.Executors.*

How Do I Use a Thread Pool

● Interfaces vary, but have common core
functionality
● Create a pool of n threads
● Set up a work function for each thread, which takes

an argument for the work to do (a task)
● Whenever there is work to be done, add a task to

the queue
– Next time a thread in the pool is available, it will grab the

task and call the work function

How Do I NOT Use a Thread Pool?

● For now, never have multiple tasks touch the
same data structure
● This is called a data race or race condition, and can

be very hard to debug.
● Can be done safely using mutexes, etc., which we

aren't teaching here; see 451

● Don't let the pool create many more threads
than you have CPUs
● Makes the threads fight for CPU time, while having

n+2 to 2*n threads for n CPUs keeps everyone
busy, but not too busy depending on the tasks

Homework 4's ThreadPool

to ThreadPool.h, EventLoop.h, and EventLoopHandler.h!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

