
CSE333 Section 4:
Non-STDIO POSIX Functions

Aryan Naraghi

What Are We Talking About?

• In class we talked about STDIO functions:

– fopen(), fread(), fwrite(), etc.

• These make use of file handles with types like
FILE* or DIR*

• But those are just pretty wrappers for the real
deal…

What’s in a POSIX FILE?

From /usr/include/libio.h:

struct _IO_FILE {

int _flags;

...

int _fileno;

...

};

File Descriptors

• Under the hood of those stdio functions are
file descriptors:

– Integer handles to files; stdio functions wrap them
with usermode buffers

– In the kernel, literally an index into a per-process
array of OS file structures

– Used in place of FILE* or DIR* for unbuffered IO
(sort of: the kernel does some buffering of its
own)

open()

• int open(const char* pathname, int flags)

• Returns a file descriptor

• Uses flags like O_RDONLY, O_WRONLY,
O_RDWR instead of “r” etc.

read()

• ssize_t read(int fd, void *buf, size_t count)

• Reads up to count bytes into address buf from
the file with handle fd, and returns # bytes
read

• Has some surprising failure modes…

read() Returns

On success, the number of bytes read is returned
(zero indicates end of file), and the file
position is advanced by this number. It is
not an error if this number is smaller than
the number of bytes requested; this may happen for
example because fewer bytes are actually
available right now (maybe because we were
close to end-of-file, or because we are reading
from a pipe, or from a terminal), or because
read() was interrupted by a signal. On error, -1
is returned, and errno is set appropriately.
In this case it is left unspecified whether the
file position (if any) changes.

From “man 2 read”

What Errors Might Read Encounter?

• EBADF – Bad file descriptor

• EFAULT – Output buffer is outside your
address space

• EINTR – A signal was encountered, and no
data was read

– This is not an error!

• And more…

How to Really Get N bytes with read()

#include <errno.h>

#include <unistd.h>

...

char *buf = ...;

int bytes_left = n;

int result = 0;

while(bytes_left > 0) {

result = read(fd, buf + (n-bytes_left), bytes_left);

if (result == -1 && errno != EINTR) {

// Real error, return error result

} else if (result == -1) {

result = 0;

}

bytes_left -= result;

}

write()

• ssize_t write(int fd, const void* buf, size_t
count);

• Similar to read(), with similar funny success
modes:

– Can return that it only wrote part of the buffer

– Can return -1 with error EINTR, which is not an
error

close()

• int close(int fd);

• Closes a file descriptor

• Can return -1 for errors

– Could also set errno to EINTR, which means you
need to try again!!!

opendir(), readdir(3)

• DIR* opendir(const char *name);

• struct dirent *readdir(DIR *dirp);

• opendir() opens a directory the way fopen
opens a regular file

• readdir() returns a pointer to the next
(statically allocated) directory entry

• Docs in “man opendir” and “man 3 readdir”

• Like the other stdio functions, file handles lurk
under the hood…

readdir(2)

• open() can be used on directories

• read() can’t, so we use readdir(2)

• int readdir(unsigned int fd, struct
old_linux_dirent *dirp, unsigned int count);

• The man page (man 2 readdir) will tell you this
was superceded by getdents()…

getdents()

• int getdents(unsigned int fd, struct
linux_dirent *dirp, unsigned int count);

• Slightly better behaved than readdir(2)

• Still one of the most painful syscalls to use

– Not declared in a header; must call directly with
the syscall() function

– The man page (man getdents) contains an
example in all its horror

readdir(3) vs. readdir_r(3)

• readdir() returns a DIR* for the next directory
entry

– Subsequent calls may return the same memory!

– Means if you iterate through multiple directories
at the same time, bad things can happen…

• See “man readdir_r” for details if you use
readdir from multiple threads, or need to see
the dirent for more than one file at a time.

fsync()

• int fsync(int fd);

• Flushes the contents of a file out of the OS’s
cache, all the way to disk

– Crucial for databases

– Assumes the OS doesn’t lie to you

• Assumes the HDD doesn’t lie to the OS…

Using File Descriptors with STDIO

• There are conversion functions

• FILE* fdopen(int fd, const char* mode);

• DIR* fdopendir(int fd);

