
Pointers, Pointers, Pointers!
Pointers, Pointers, Pointers, Pointers, Pointers, Pointers, Pointers,

Pointers, Pointers, Pointers, Pointers, Pointers, Pointers!

Colin Gordon
csgordon@cs.washington.edu

University of Washington

CSE333 Section 2, 4/7/11

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 1 / 32

Today’s Topics

Pointers

Pointers

Pointers

Homework 1

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 2 / 32

Pointers!

Pointers to basic types

Pointers to arrays

Pointers to structs

Pointers in structs

Function pointers

Crazy Pointers

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 3 / 32

Basic Pointers

int x = 0;

int *p;

p = &x;

*p = 3;

*p++;

Final result: x = 4

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 4 / 32

Array Pointers

int a[3] = {0};

int *p1, *p2;

p1 = a;

p2 = &a;

printf("p1:%x p2:%x\n", p1, p2);

p1 = &a[1];

p2++;

printf("p1:%x p2:%x\n", p1, p2);

Should print two lines where each pointer is equal.

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 5 / 32

Struct Pointers

typedef struct point {

float x, y;

} Point, *PointPtr;

...

float *f_ptr;

Point a = {0.0, 0.0}; // stack allocate a Point

PointPtr a_ptr = &a; // a_ptr points to a

PointPtr b_ptr =

(PointPtr)malloc(sizeof(Point)); // b_ptr points to a heap allocation

if (b_ptr == NULL) { ... } // handle failed allocation

a_ptr->x = 1.0; // same as a.x = 1.0

a.y = 2.0; // same as a_ptr->y = 2.0

(*b_ptr)=a; // copy assignment of a into the heap

f_ptr = &b_ptr->y; // f_ptr points to y field of b_ptr

*f_ptr = 5.0; // same as b_ptr->y = 5.0

free(b_ptr);

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 6 / 32

Structs with Structs

Accessing nested structures:

typedef struct line {

Point p1, p2;

} Line, *LinePtr;

...

Line l;

l.p1.x = 0.0;

l.p1.y = 0.0;

l.p2.x = 1.0;

l.p2.y = 1.0;

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 7 / 32

Structs with Pointers

The same structure, with pointers:

typedef struct line {

Point *p1, *p2;

} Line, *LinePtr;

...

Line *l_ptr = (LinePtr)malloc(sizeof(Line));

if (l_ptr == NULL) { ... }

l_ptr->p1 = (PointPtr)malloc(sizeof(Point));

if (l_ptr->p1 == NULL) { ... /* What happens to l_ptr? */}

l_ptr->p2 = (PointPtr)malloc(sizeof(Point));

if (l_ptr->p2 == NULL) { ... }

free(l_ptr->p1);

free(l_ptr->p2);

free(l_ptr);

Remember to free things if you fail after allocating.

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 8 / 32

Recursive Structs (First Try)

Coming from Java, you might naturally try this...

typedef struct tnode {

int val;

TreeNode left;

TreeNode right;

} TreeNode, *TreeNodePtr;

But what is sizeof(TreeNode)?

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 9 / 32

Recursive Structs (Second Try)

But we always know the size of a pointer...

typedef struct tnode {

int val;

struct tnode* left;

struct tnode* right;

} TreeNode, *TreeNodePtr;

Under the hood, this is essentially what Java does when you declare a
class whose members point to objects of its own class.

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 10 / 32

Function Pointers

typedef void (*FuncPtr)(int*);

Why Name a Function Type?
To pass functions as arguments! Think Java event listeners.

From the homework:

typedef void(*PayloadFreeFnPtr)(void *payload);

...

void FreeLinkedList(LinkedList list,

PayloadFreeFnPtr payload_free_function) {

...

... payload_free_function(...) ...

...

}

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 11 / 32

Out Arguments
A common pattern when you need to return multiple things.

/*

* Allocate an integer array of n integers in the out argument result.

* Return true for success, or false if there was not enough memory.

*/

bool allocIntArray(int n, int** result) {

result = (int)malloc(n*sizeof(int));

return (*result != NULL);

}

...

int main(int argc, char* argv[]) {

int* arrayOfInts = NULL;

bool success = false;

...

success = allocIntArray(1024, &arrayOfInts);

if (!success) {

printf("Ran out of memory!!!\n");
return -1;

}

arrayOfInts[0] = ...

...

}

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 12 / 32

Crazy Pointers

What’s this pointer?
int*

Answer
A pointer to an int

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 13 / 32

Crazy Pointers

What’s this pointer?
int[]

Answer
A pointer to an int

OR
an int array

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 14 / 32

Crazy Pointers

What’s the difference between these pointers?
int* and int[]

Answer
Mostly convention; both are pointers to ints, by convention int[] will

often be used when that int is the first element of an array, and a
function argument (int x[]; is not a valid local variable).

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 15 / 32

Crazy Pointers

What’s this pointer?
int**

Answer
A pointer to a pointer to an int

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 16 / 32

Crazy Pointers

What’s this pointer?
int*[]

or used to declare a variable,
int* x[];

Answer
A pointer to a pointer to an int

OR
(by convention) an array of int pointers

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 17 / 32

Crazy Pointers

Given these declarations:
int x;

What is the type of this expression?
&x

Answer
A pointer to an int; int*

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 18 / 32

Crazy Pointers

Given these declarations:
typedef struct treenode {
...

struct treenode* left;

struct treenode* right;

...

} TreeNode, *TreeNodePtr;

TreeNode n;

What is the type of this expression?
&n.left

Answer
A pointer to a pointer to a TreeNode; a TreeNode** or TreeNodePtr*

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 19 / 32

Crazy Pointers

Given these declarations:
int x[1024];

What is the type of this expression?
x

Answer
A pointer to an int; int*

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 20 / 32

Crazy Pointers

Given these declarations:
int x[1024] = {0};

What is the result of evaluating of this expression?
x[1024]

Answer
Unknown! This goes off the end of the array.

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 21 / 32

Crazy Pointers

Given these declarations:
int x[1024] = {0};

What is the difference between these expressions?
*x = 1;

and
x[0] = 1;

Answer
Only syntax; they do the same thing

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 22 / 32

Crazy Pointers

Given these declarations:
typedef void (*FancyFunc)(int*, char*);

void f(int *i, char *c) { ... }

What is the type of this expression?
f

Answer
Either void (*)(int*,char*) or FancyFunc

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 23 / 32

Crazy Pointers

Given these declarations:
typedef void (*FancyFunc)(int*, char*);

void f(int *i, char *c) { ... }
FancyFunc func;

FancyFunc *func ptr

Is this valid code? What does it do?
func ptr = &func;

*func ptr = f

Answer
It is valid. It stores the address of f in the function pointer local variable
func.

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 24 / 32

Homework 1

Overview

Hash functions

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 25 / 32

Overview

To the web!

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 26 / 32

Hash Tables

Essentially a key-value map; insert a value for a specific key, and
look it up later.

The key property is that unlike tree maps or dictionary lists,
looking up a key in a hash table is ammortized O(1) time.

Covered in detail in 332

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 27 / 32

Chained Hash Tables

The most common form is called a chained hash table.

An array of buckets, each containing (a pointer to) a linked-list
(chain) of key-value pairs.

Once you know which bucket to look in, searching for a key is
easy: search through the linked list in that bucket for a pair with
the right key, and return the corresponding value.

So how do you know which bucket the key is in?

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 28 / 32

Hash Functions

Generally, a hash function is a function that reduces some
arbitrary amount of data to a small number, like an integer.

This provides a small data for (estimating) equality of much larger
pieces of data.

They are used in many places: for example, cryptography, file
system compression, and hash tables

Different use cases desire different properties of their hash
functions; for hash tables

Hash tables use hash functions to map keys to a specific bucket.
Clients must chew up whatever value they want as a key into
something suitable to hash. The ideal hash function for a hash table
will distribute keys to buckets roughly evenly (more about this in 332).

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 29 / 32

Homework 1’s Hash Function

uint64_t FNVHash64(unsigned char *buffer, unsigned int len) {

// This code is adapted from code by Landon Curt Noll

// and Bonelli Nicola:

//

// http://code.google.com/p/nicola-bonelli-repo/

static const uint64_t FNV1_64_INIT = 0xcbf29ce484222325ULL;

static const uint64_t FNV_64_PRIME = 0x100000001b3ULL;

unsigned char *bp = (unsigned char *) buffer;

unsigned char *be = bp + len;

uint64_t hval = FNV1_64_INIT;

/*

* FNV-1a hash each octet of the buffer

*/

while (bp < be) {

/* xor the bottom with the current octet */

hval ^= (uint64_t) * bp++;

/* multiply by the 64 bit FNV magic prime mod 2^64 */

hval *= FNV_64_PRIME;

}

/* return our new hash value */

return hval;

}

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 30 / 32

How To Generate a Key

For integers, we provide a helper function:

uint64_t key = FNVHashInt64(100);

For more general structures, you can either:
1 Cast the address to an unsigned 64-bit integer and hash that (only

gives the same hash for the same exact memory address, rather
than semantically equal structures), or

2 Convert the structure’s semantically meaningful information to a
bunch of bytes, and hash that: uint64 t key =
FNVHash64(point ptr, sizeof(Point))

◮ Gets much trickier if that structure contains pointers!

These uses of the hash function essentially correspond to Java’s
.hashCode() method.

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 31 / 32

Key→Bucket

There is also the issue of turning the key into a bucket number, which
is also a hash (though much simpler in our case), mapping 64-bit
integers to integers in the interval [0,ht->num_buckets):

uint32_t HashKeyToBucketNum(HashTableRecordPtr ht, uint64_t key) {

return (uint32_t) (key % ((uint64_t) ht->num_buckets));

}

Colin Gordon (University of Washington) Section 2: Pointers Pointers Pointers! CSE333 - Spring 2011 32 / 32

	Pointers!
	Homework 1

