
Reviewing gcc, make, gdb, and Linux Editors1

Colin Gordon
csgordon@cs.washington.edu

University of Washington

CSE333 Section 1, 3/31/11

1Lots of material borrowed from 351/303 slides
Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 1 / 23

Today’s Topics

gcc: compilation, linking

make: simple makefiles

gdb: breakpoints, inspecting state

Linux Editors: brief overview

Ask questions any time!

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 2 / 23

Basic GCC

The simplest way to use gcc is:

gcc -o program file1.c file2.c ...

This creates the executable program in the current directory.

Omitting the -o option generates a.out.

You’ll probably also want debugging information and to be warned
about dangerous things you might have done:

gcc -g -Wall -o program file1.c file2.c ...

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 3 / 23

More Flexible GCC

Sometimes we only want to build part of the program:

gcc -g -Wall -c module1.c

generates module1.o (an object file). An object file is compiled code
with unresolved references. For example, if module1 uses printf,
there will be an unresolved reference to printf in the object file.

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 4 / 23

Linking

There is a tool called the linker that puts object files together. This
includes resolving references:

Linking an object file with an unresolved reference to foo() to an
object file with the code for foo() resolves the reference.

The linker program is called ld, but you’ll almost always just have gcc

invoke the linker for you.

gcc -g -Wall -c module1.c

gcc -g -Wall -c module2.c

gcc -g -Wall -c main.c

gcc -o program main.o module1.o module2.o

gcc implicitly links against the standard C libraries.

Great, but why did we bother doing this?

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 5 / 23

Why Object Files and Linkers?

Linking object files has two big advantages:
Can ship code around without source or building an executable

◮ Usually done as a library, which is a slighly souped-up object file

Can (re)compile part of your program without compiling all of it
◮ Recompile only what has changed, avoid wasting time recompiling

unaffected code
◮ Compiling just the core parts of Linux or Solaris takes 8+ hours;

compiling all of WindowsTM takes weeks

But there are disadvantages, too:

It is tedious to re-type these commands as needed

It is easy to make mistakes about which parts of your program
need to be recompiled.

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 6 / 23

Introducing make

make is a tool that does all of this tedious work for you. All you do is:
Write a makefile

◮ Specify what depends on what. For example:
⋆ An object file depends on its C source and the headers that source

uses
⋆ The program depends on all the object files

◮ Specify how to generate a file given what it depends on
⋆ e.g. how to generate an object file from C files and headers

Run the make command and tell it what final result you would like.

Something to generate is called a target. Something processed to
produce a target is called a source.

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 7 / 23

Format of a Makefile

target: source1 source2 ...

command1

command2

...

queue.o: queue.c queue.h

gcc -g -Wall -c queue.c

Command lines must start with a TAB character, not spaces. You can
split a long command across multiple lines by putting \ at the end of
the first line.

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 8 / 23

Running make

On the command line:

make target

Looks for Makefile in the current directory, can be overridden with
-f file

If no target specified, uses first target in file

Make decides what to do based on the dependency graph and file
modification times.

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 9 / 23

Standard make Targets

all: make everything

all: client server

clean: remove generated files, start over with just source

clean:

rm -f *.o client server

These are called phony targets, because they never exist on disk.

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 10 / 23

Advanced Makefiles

How many times do you want to write all the arguments to gcc? How
many places do you want to update arguments to gcc?

Variables / Macros
make allows variables to hold common expressions. For example:

CC = gcc

CFLAGS = -g -Wall

queue.o: queue.c queue.h

$(CC) $(CFLAGS) -c queue.c

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 11 / 23

Built-in Macros and Patterns

Built-in Macros
$@ current target

$^ all sources

$< leftmost source

Patterns
%.o: %.c

$(CC) $(CFLAGS) -c $<

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 12 / 23

Automatically Generating Dependencies

We now have a tool to exploit dependencies for us, but it’s still a hassle
to write them down correctly.

gcc -MM [src files]
◮ Useful variants like -M and -MG (man gcc)
◮ Automatically create makefile rules to generate object files
◮ Often run via a phony target:

depend: $(SRC)

$(CC) -M $^ > .depend

◮ Then include the result in your makefile:
include .depend

Also a tool called makedepend

Read more if you’re interested

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 13 / 23

GCC Flags

-o file Writes result to file
-c Stops compilation with an object file; no linking
-g Outputs debugging information
-On Uses optimization level n, for 0 ≤ n ≤ 3
-I dir Looks for header files in dir - an include directory
-L dir Looks for libraries to link against in dir
-l lib Link against the library lib
-Wall Warn about anything questionable
-Werror Treat all warnings as compilation errors

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 14 / 23

GDB

gdb is the debugger accompanying gcc

A text-mode debugger as an interactive shell, though GUI
frontends exist
Provides standard debugger functionality:

◮ Breakpoints
◮ Stepping over lines of code, into/out of functions
◮ Stack traces
◮ Print variables, heap structures
◮ Listing code

Also has more advanced functionality, like data breakpoints,
disassembling code...

Pretty good built-in help system (e.g. help backtrace)

Not very useful without -g flag (emit debugging info) to gcc

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 15 / 23

Finding a SEGFAULT

#include<s t d i o . h>
#include<s t d l i b . h>
i n t main (i n t argc , char∗ argv []) {

i n t i ;
i n t t o t a l = 0 ;
for (i = 0 ; i <= argc ; i ++) {

t o t a l += a t o i (argv [i]) ;
}
p r i n t f (” The t o t a l i s %d\n ” , t o t a l) ;
return 0;

}

This program should print the sum of all the numbers in its arguments.
Instead:

[csgordon@monarch:~/cse333]$ gcc -g sum.c -o sum

[csgordon@monarch:~/cse333]$./sum 3 4 5

Segmentation fault

[csgordon@monarch:~/cse333]$

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 16 / 23

Debugging a Segmentation Fault

First approach
Stare at the code. Really hard.

Works sometimes.

Often doesn’t work at all.

Better approach
Run gdb

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 17 / 23

Debugging with GDB I
First, start gdb:

[csgordon@monarch:~/cse333]$ gdb sum

GNU gdb (GDB) Fedora (7.1-34.fc13)

...

Reading symbols from /homes/gws/csgordon/cse333/sum...done.

(gdb)

Now run the program with arguments:

(gdb) run 3 4 5

Starting program: /homes/gws/csgordon/cse333/sum 3 4 5

Program received signal SIGSEGV, Segmentation fault.

0x4debfc0c in ____strtol_l_internal () from /lib/libc.so.6

Missing separate debuginfos, use: debuginfo-install glibc-2.12.2-1.i686

(gdb)

Now we’ve reproduced the bug in the debugger...

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 18 / 23

Debugging with GDB II
Now we need to find out where we are

(gdb) backtrace

#0 0x4debfc0c in ____strtol_l_internal () from /lib/libc.so.6

#1 0x4debf970 in strtol () from /lib/libc.so.6

#2 0x4debc2c1 in atoi () from /lib/libc.so.6

#3 0x08048423 in main (argc=4, argv=0xbffff7e4) at sum.c:7

(gdb)

The library probably shouldn’t be dereferencing a bad pointer unless
we’re providing bad input. It looks like we’re calling the library at line 7,
let’s look at that:

(gdb) up 3

#3 0x08048423 in main (argc=4, argv=0xbffff7e4) at sum.c:7

7 total += atoi(argv[i]);

(gdb)

Can also do up with no argument for moving by one frame

There is also down to go in the other direction

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 19 / 23

Debugging with GDB III

What’s wrong with our call?

...

#3 0x08048423 in main (argc=4, argv=0xbffff7e4) at sum.c:7

7 total += atoi(argv[i]);

(gdb) print i

$1 = 4

(gdb) p argv[i]

$2 = 0x0

(gdb) quit

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 20 / 23

Breakpoints
[csgordon@monarch:~/cse333]$ gdb sum

...

(gdb) break sum.c:7

Breakpoint 1 at 0x804840f: file sum.c, line 7.

(gdb) r 3 4 5

Starting program: /homes/gws/csgordon/cse333/sum 3 4 5

Breakpoint 1, main (argc=4, argv=0xbffff7f4) at sum.c:7

7 total += atoi(argv[i]);

(gdb) p i

$1 = 0

(gdb) p argv[i]

$2 = 0xbffff991 "/homes/gws/csgordon/cse333/sum"

(gdb) c

Continuing.

Breakpoint 1, main (argc=4, argv=0xbffff7f4) at sum.c:7

7 total += atoi(argv[i]);

(gdb) p i

$3 = 1

(gdb) p argv[i]

$4 = 0xbffff9b0 "3"

(gdb) q

[csgordon@monarch:~/cse333]$

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 21 / 23

GDB Cheat Sheet

Abbr. Command Result
r run args Runs program from the start with args
b break file:n Sets a breakpoint on line n of file
b break fn Sets a breakpoint at start of fn
b break file:fn Sets a breakpoint at start of fn in file
d delete breakpoint Delete breakpoint breakpoint, which can be a

file and line number or a breakpoint number
info breakpoints List current breakpoints
info locals List local variables
info variables List local & global variables

c continue Continues execution to next breakpoint
n next Execute one statement and stop
s step Step inside function
l list Lists code: defaults to current code, takes op-

tional location
bt backtrace Show stack trace, with arguments
w where Show stack trace, with arguments
h help topic Get help on topic

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 22 / 23

Text Editors

Linux has many great text editors. We don’t care which you use, but
here are a few options.

gedit - like Notepad or TextEdit, but with syntax highlighting

Eclipse - has a C/C++ mode

emacs - probably seen it before, a very powerful text editor, which
can integrate with build systems, version control, debuggers...

vim - another powerful text editor with a more unusual interface

All of these have syntax highlighting, which might make it easier to
read code. We will post links to tutorials for the more complicated
editors online.

Colin Gordon (University of Washington) Section 1: gcc/make/gdb Review CSE333 - Spring 2011 23 / 23

	GCC
	Makefiles
	GDB
	Editors

