CSE 333

Lecture 9 - storage

Steve Gribble
Department of Computer Science & Engineering
University of Washington

S
-

CSE333 lec 9 storage // 04-18-11 // gribble

Administrivia

Colin’s away this week

- Aryan will be covering his office hours (check the schedule for
the location)

Reminder about coding exercises

- the way to build intuition and skill In systems programming is
to write a lot of code

- we strongly advise you to do all of the exercises

» this means writing your own solution before looking at ours! :)

CSE333 lec 9 storage // 04-18-11 // gribble

Administrivia

HW?2 Is out today

- more complex than HW1

» you will finish our implementation of a file system crawler, indexer,
and query processor (i.e., a search enginel)

you will need to teach yourself about several system calls along the
way (we tell you which man pages to read)

» there is a more code for you to read and understand

- please, please, please

» start early and come see us when you run into issues!

CSE333 lec 9 storage // 04-18-11 // gribble

Administrivia

HW?2 teams

- you can work solo if you want
- Of, you can team up with somebody else (teams of 2)
» you need to find a teammate; you can use the discussion board

- If you work in a team, you need to be together when you code
» one of you writes code, the other watches and suggests/bughunts

» also, one of you must code parts A & C, the other codes B & D

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

(S

)

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

H

)

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

t 1

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

()

()

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

t

()

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

t 1

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part B, we ask you to walk through a giant in-memory
C string, extracting out individual words. To do it, you'll
“walk” two pointers down the string in place.

f = word start
T = word end

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —>

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”

when processing a query
initial search

52 @ result list

awesome —» <

assignment —>

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”

when processing a query

52

/.

awesome —» <

assignment —>

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —>

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —>

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

awesome —»

assignment —>

CSE333 lec 9 storage // 04-18-11 // gribble

HWZ2: parsing a text file

In part C, we ask you to intersect two “posting lists”
when processing a query

final search
result list

awesome —»

82,.

assignment —>

CSE333 lec 9 storage // 04-18-11 // gribble

HW?2: ugly hack

#include "11l.h"
void LLNullFree(void *el) { }

int main(int argc, char **argv) {
int res = 52;
LinkedList 11 = AllocatelLinkedList() ;
assert(ll '= NULL);

// Store the some ints in the linked list without
// needing to call malloc. How? By abusing

// type casting and casting an (int) to a (void *).
// UGLY HACK ALERT!'! Q: when is this safe?
PushLinkedList (11, (void *) res);
PushLinkedList (11, (void *) 87);

PopLinkedList (11, (void *¥*) &res);

// Free the linked list. Since the payload is
// not a pointer to heap-allocated memory, our
// free function should do nothing.
FreeLinkedList (11, &LLNullFree)

return O;

1// gribble

HVW?2

We provide you with our libhw1.a

- AFAQ: “test_suite crashes inside InsertHashTable(). | think
this means your libhw1.a has a bug in it.”

» probably not; more likely it means that your code has a bug in it that
stomps over the memory that libhw.a relies on

but, if you really think we have a bug in our libhw1.a, send us the
simplest piece of code that replicates the problem, and we’ll check

CSE333 lec 9 storage // 04-18-11 // gribble

The storage “stack™

your

Like most systems, has many, - program
many layers of abstraction '

- |lots of complexity, but each layer
IS understandable on its own

- layer X

» relies on the features of layer X-1
device driver : device driver

» provides more features to layer X+1

solid state

hard drive drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware
Hard drive

- spinning magnetic platters your
program

» spins at ~7200 RPM

- read/write head on an arm

» moves back and forth; ~5ms to
move to a new location

buffer cach

device driver | device driver

Sorateeey)
: solid state
hard drive drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware

Hard drive characteristics

exponentially cheaper capacity
» 1TB = $60; ~2x every 18 months

great “sequential” bandwidth

» ~200MB/s, improving exponentially
along with capacity

terrible “random” bandwidth

» ~1MB/s, not improving, since it’s
mechanically limited

this difference dominates the
design of higher layers

your
program

device driver | device driver

Setiareeny
. solid state
@ drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware

Hard drive interface

your

- an array of 512 byte sectors program

- read / write entire sector at a time

Hard drive internals

- remaps bad sectors

» sequentiality can be tricky

- has an on-controller RAM buffer device driver ; device driver

> writes may indicate completion _ TR
before they hit the platter! hard'drive drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware - SSDs
banks of NAND flash chips
- unit of read/write is ~4KB page

your

» before write, must erase entire i i e,
~512KB block to all 1s, then can
set individual bits to O

» limited # of writes per block

- No mechanical parts!

buﬁercache

device driver | device driver

solid state
drive (SSD)

\/

CSE333 lec 9 storage // 04-18-11 // gribble

hard drive

Storage hardware - SSDs

SSD characteristics

20x more expensive than HD

» 1TB = $2K:; ~2x better per year
fantastic read bandwidth

» ~40K IOPS, ~250MB/s

» same for random & sequential!

good sequential write bandwidth
» ~30K IOPS, ~175 MB/s

but, random writes are slower
» ~3KIOPS, ~10 MB/s

your
program

device driver | device driver

. solid state
hard drive M(Q

\/

CSE333 lec 9 storage // 04-18-11 // gribble

Storage hardware - SSDs

SSD interface
- an array of 4096 byte page

- read / write entire page at a time

SSD internals

- flash translation layer (FTL)

» wear leveling, background erasing
& remapping to maintain a pool of
writeable blocks

your
program

device driver | device driver

. solid state
hard drive M(Q

\/

CSE333 lec 9 storage // 04-18-11 // gribble

Device drivers

Software layer at bottom of OS

your
- abstracts away the details of ----y program

communicating with different
storage interfaces

» |DE, SCSI, etc.

probes the device to learn its
characteristics

permits higher-level software to device driver : device driver
ISsue commands to read and

- : solid state
write blocks hard drive drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

Bufter cache

OS-managed pool of memory

- stores recently read disk blocks

» speed up re-reads by fetching
recently read data from cache

accumulates writes in buffer
cache, eventually write back

» reduces traffic via coalescing

» batches, reorders writes to attempt
to induce more sequential /O

can introduce reliability problems
on OS crash, HW power loss

your
program

dewce drlver device drlver

solid state

hard drive drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

File system

Abstracts away disk blocks into
fles and directories your

program
- at its core, Is just maintains a

data structure that lives on disk

- ES is tree of files & directories

» afileis atree of disk blocks

e the root of tree is the inode;

Inode contains file metadata : ERRR . _
rather than data device driver : device driver

» adirectory is a file solid state

hard drive drive (SSD)

e contains a table mapping names
to inodes

CSE333 lec 9 storage // 04-18-11 // gribble

File system

There are many file systems

they differ in how they lay out the
data structure on disk

» has big performance implications

» agood FS attempts to preserve
locality, sequentiality in the layout

they differ in how they order
operations, flush the buffer cache

» tradeoffs between consistency of the
file system, performance, and the
delay before writes are durable

some permit snapshots, versions,
and other features

your
program

device driver | device driver

solid state

hard drive drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

VES layer

Level of indirection between OS
AP| and specific file systems

- permits multiple file systems to
co-exist within your computer

» provides an API that lets concrete
file system plugs into VFS

» provides a single, uniform API to
the higher layers of the OS

Why multiple file systems?

- mount multiple storage devices,
drives with multiple partitions,
USB thumbdrives, NFS, etc.

your

program

OS

device driver | device driver

hard drive

solid state
drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

System calls

basic read / write operations

- open(), read(), write(), close(), .. . pr)é;l:;m

seek within a file

- Iseek(), ...

ability to flush dirty data from
buffer cache to disk

- fflush(), sync()

device driver | device driver

Mmanage access permissions

Rard drive solid state
- chmod(), chown(), ... drive (SSD)

CSE333 lec 9 storage // 04-18-11 // gribble

System calls
Two basic styles of doing file /O

- blocking 1/0 your
: | program
» the system call waits until the 1/0

completes before returning

» the thread of execution that
invoked the system call stalls until
the call completes

- non-blocking I/0

» system call returns immediately device driver | device driver

e a completion event fires later

: : rardar solid state
» thread of execution can juggle i S drive (SSD)

multiple, concurrent tasks

CSE333 lec 9 storage // 04-18-11 // gribble

Exercise 1

Write a program that, similar to last lecture, copies the
contents of a file

» USe argc, argv to get the source and destination file names
» unlike last lecture, use open(), read(), write(), close()

» read the man pages for open, read, write, close

» read CSAPP chapter 10

CSE333 lec 9 storage // 04-18-11 // gribble

Exercise 2

Write a program that measures the sequential bandwidth
of writing data to disk

- “man gettimeofday” to measure time

- note that just because write() returns, it doesn’t mean data is
on disk

» man “fsync” to learn how to flush a file’s contents to disk

- you can assume that sequential writes to a file result in
sequential writes to disk (mostly true)

Bonus: measure the random seek write bandwidth

CSE333 lec 9 storage // 04-18-11 // gribble

Exercise 3

Modify your linked list implementation from HW1 to:
- add a “WriteToFile()” function

» pass the name of the file to create / truncate and write to as an
argument

» pass a “‘convert payload to bytearray” function pointer
- writes each element of the linked list to the file

» Since elements are arbitrary byte sequences, you’ll need to record
the length of an element before you write the element itself

- add a “LoadLLFromFile()” function that takes a filename and
returns a linked list

» reads the output of WriteToFile(), obviously!

CSE333 lec 9 storage // 04-18-11 // gribble

See you on Wednesday!

CSE333 lec 9 storage // 04-18-11 // gribble

