CoE 333

Lecture 22 -- fork, pthread_create, select

Steve Gribble
Department of Computer Science & Engineering
University of Washington

S
S

CSE333 lec 22 networl k.4 // 05-20-11 // gribble

Administrivia

HW4 out on Monday

- you’re gonna love it
Final exam

- Wednesday, June 8th, 2:30-4:20pm, In this room

- will not be offering it early or late

CSE333 lec 22 network.4 // 05-20-11 // gribble

Last time

We implemented a simple server, but it was sequential

- It processed requests one at a time, in spite of client
interactions blocking for arbitrarily long periods of time

» this led to terrible performance
Servers should be concurrent

- process multiple requests simultaneously
» issue multiple /O requests simultaneously
» overlap the I/O of one request with computation of another

» utilize multiple CPUs / cores

CSE333 lec 22 network.4 // 05-20-11 // gribble

Today

We'll go over four versions of the ‘echo’ server
- sequential

- concurrent
» processes [fork()]
» threads [pthread_create() |

» non-blocking [select()]

CSE333 lec 22 network.4 // 05-20-11 // gribble

Sequential

listen fd = Listen(port);
while (1) {
client fd = accept(listen f£fd);
pseudgcode: buf = read(client fd);
write(client fd, buf);

close(client £fd);

look at echo_sequential.cc

CSE333 lec 22 network.4 // 05-20-11 // gribble

Whither sequential?

Benefits

- super simple to build

Disadvantages

- Incredibly poorly performing
» one slow client causes all others to block

» poor utilization of network, CPU

CSE333 lec 22 network.4 // 05-20-11 // gribble

Concurrency with processes

The parent process blocks on accept(), waiting for a
new client to connect

- when a new connection arrives, the parent calls fork() to
create a child process

the child process handles that new connection, and exit()’s
when the connection terminates

Remember that children become “zombies” after death
- option a) parent calls wait() to “reap” children

- option b) use the double-fork trick

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

TR

A

.
-

Ot
@ .

Ertes

/ .

A2

—

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

server

sServer

fork() child

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

server

sServer

fork() child

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

server

server

sServer

fork() grandchild

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

server

server

sServer

fork() grandchild

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

child exit()’s / parent wait()’s

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

child exit()’s / parent wait()’s

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

parent closes its
client connection

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

sServer

sServer

server

"y fork() child

. fork() grandchild

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

server

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

client

client

client server client

client

client

client server

CSE333 lec 22 network.4 // 05-20-11 // gribble

Concurrent with processes

look at echo_concurrent_processes.cc

Whither concurrent processes’?

Benefits
- almost as simple as sequential
» in fact, most of the code is identical!

- parallel execution; good CPU, network utilization

Disadvantages

- processes are heavyweight
» relatively slow to fork
» context switching latency is high

» communication between processes is complicated

CSE333 lec 22 network.4 // 05-20-11 // gribble

How slow is fork?

run forklatency.cc

Implications?

0.18 ms per fork

- maximum of (1000 / 0.18) = 5,555.5 connections per second
- 0.5 billion connections per day per machine
» fine for most servers
» too slow for a few super-high-traffic front-line web services
Facebook serves O(750 billion) page views per day
guess ~1-20 HT TP connections per page

would need 3,000 -- 60,000 machines just to handle fork(),
l.e., without doing any work for each connection!

CSE333 lec 22 network.4 // 05-20-11 // gribble

Concurrency with threads

A single process handles all of the connections

- but, a parent thread forks (or dispatches) a new thread to
handle each connection

- the child thread:

» handles the new connection

» exits when the connection terminates

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

> pthread_create()

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

A)

+ pthread_create()

client

CSE333 lec 22 network.4 // 05-20-11 // gribble

Graphically

client

client

client

shared
data
structures

client

client

client

CSE333 lec 22 network.4 // 05-20-11 // gribble

Concurrent with threads

look at echo concurrent threads.cc

Whither concurrent threads?

Benefits

- straight-line code, line processes or sequential

» still the case that much of the code is identical!
- parallel execution; good CPU, network utilization
» lower overhead than processes
- shared-memory communication is possible
Disadvantages

- synchronization is complicated

- shared fate within a process; one rogue thread can hurt you badly

CSE333 lec 22 network.4 // 05-20-11 // gribble

How fast Is pthread_create”

run threadlatency.cc

Implications?

0.021 ms per thread create; 10x faster than process forking
- maximum of (1000 / 0.021) = ~50,000 connections per second
- 4 billion connections per day per machine

» much, much better

But, writing safe multithreaded code is serious voodoo

CSE333 lec 22 network.4 // 05-20-11 // gribble

Non-blocking 1/0

Warning: an unfamiliar and slightly non-intuitive topic...

Why did the sequential implementation do badly?

- |t relied on blocking system calls
» accept() blocked until a new connection arrived
» read() blocked until new data arrived

» write() potentially blocked until the write buffer had room

- nothing else could happen while the main thread blocks

CSE333 lec 22 network.4 // 05-20-11 // gribble

Non-blocking 1/0

An alternative: non-blocking system calls

- non-blocking accept()
» if a connection is waiting, accept() succeeds and returns it

» if N0 connection is waiting, accept() fails and returns immediately

- non-blocking read()
» If data is waiting, read() succeeds and returns it

» if no data is waiting, read() fails and returns immediately

- non-blocking write()
» if buffer space is available, write() deposits data and returns

» if no buffer space is available, write() fails and returns immediately

CSE333 lec 22 network.4 // 05-20-11 // gribble

A (bad) first attempt [N clients]

2

state s[N]; // clients’ state field
int fd[N], readfd[N]; // clients’ file descriptors
char *data[N], *fdata[N]; // buffers holding clients’ data

while (1) {
for (ANt =H0 <N A)]

if (s[i] == NET READING) {
if (nb_read(fd[i], data[i]))
s[i] = FILE READING;
}

if (s[i] == FILE READING) {
if (nb_read(getfd(data[i]), fdata[i]))
s[i] = NET _WRITING;

}

if (s[i] == NET WRITING) ({
if (nb write(fd[i], fdata[il])
s[i] = NET READING;

Compare with threaded

s

pthread create(tl, handleclient, £dl);
pthread create(t2, handleclient, £d2);

handleclient (int £d) {
while (1) {
data = geturldata (£fd);
do netwrite(fd, filedata); // NET WRITING

}
}

char *geturldata(int £d) ({
filename = read(£fd); // NET READING
return readfile (filename) ; // FILE READING

}

void do write(int £d, char *data) ({
write (fd, data);
}

char *readfile(char *filename) {
return do read(fopen(filename)) ;

}

gribble

Pictorially

. Egeturldata: .
. fileread() . gnetread()

%fileread()

geturldata();
do_write();

NET_WRITING while (1) {
FILE_READING g § accept();
NET_READING thread_create(start);

NON BLOCKING THREADED

CSE333 lec 22 network.4 // 05-20-11 // gribble

NON BLOCKING

fileread()

NET_WRITING

FILE_READING

NET_READING

Task state

- kept In a table in the heap

Task concurrency, threads

- single thread dispatches
“I/O is available” event

- program *is* task scheduler

Call graph
- only one “procedure” deep

- code path is sliced at what
used to be blocking 1/0

CSE333 lec 22 network.4 // 05-20-11 // gribble

THREADED

Task state

- kept in each thread’s stack

Task concurrency, threads

- each thread spurts computation
between long blocking 10s

- OS is the scheduler

Call graph

- many procedures deep; stack
trace lines up with task progress

Ege&Md&a: :
netread()
fileread()

geturldata();
do_write();

while (1) {
accept();
thread_create(start);

CSE333 lec 22 network.4 // 05-20-11 // gribble

Problem with first attempt

It burns up the CPU, @

constantly looping e

ORI U = O TN L Y

- testing each connection to if (s[i] == NET_READING) {

see If It e : d t if (nb_read(fd[i], data[i]))
CEIVed an even s[i] = FILE_READING;

}

» If so, dispatch the event

if (s[i] == FILE READING) ({

: : if (nb_read(...)
which events"? s[i] = NET WRITING;

}
» fdis read’able

if (s[i] == NET WRITING) {

» fd is write’able if (nb write(...)
s[i] = NET_READING;

» fd Is accept’able

» fd closed / in an error state

CSE333 lec 22 network.4 // 05-20-11 // gribble

An Idea

Instead of constantly polling each file descriptor, why not have
one blocking call?

- “hey OS, please tell me when the next event arrives”

p
while (1) {
(fd, event) = wait for next event(fd array);

switch (event) {

NET WRITEABLE:
do netwrite (fd, lookup state(fd));
break;

NET READABLE:
do netread(fd, lookup state(fd));
break;

FILE READABLE:
do fileread(fd, lookup state(£fd));
break;

NET CLOSED:
close (£fd) ;
break;

j_;ribb\e

select()

int select(int nfds,
fd set *read fds,
fd set *write fds,
fd set *error fds,

struct timeval *timeout) ;

Waits (up to timeout) for one or more of the following:
- readable events on (read_fds)
- writeable events on (write_fds)

- error events on (error_fds)

CSE333 lec 22 network.4 // 05-20-11 // gribble

See you on Monday!

CSE333 lec 22 network.4 // 05-20-11 // gribble

—xercise 1

Write a simple “proxy” server
- forks a process for each connection

- reads an HT TP request from the client

» relays that request to www.cs.washington.edu

- reads the response from www.cs.washington.edu

» relays the response to the client, closes the connection

Try visiting your proxy using a web browser :)

CSE333 lec 22 network.4 // 05-20-11 // gribble

—Xercise 2

Write a client program that:

loops, doing “requests” in a loop. Each request must:
» connect to one of the echo servers from the lecture
» do a network exchange with the server

» close the connection
keeps track of the latency (time to do a request) distribution
keeps track of the throughput (requests / s)

prints these out

CSE333 lec 22 network.4 // 05-20-11 // gribble

