CSE 333

Lecture 2 - gentle re-introduction to C

Steve Gribble
Department of Computer Science & Engineering
University of Washington

S
-

CSE333 lec 2 C.1// 03-30-11 // gribble

HWO results

question

| have programmed in C before 89% 11%

| have programmed in C++ before 26% 4%

languages: Java (100%), Python (9%), x86 (4%), C# (5%)),
Ruby (0%), JavaScript (10%), PHP (15%), Pascal (0%),
Haskell (0%), visual basic (2%)

| am taking 332 right now 95% 5%

| know what a hash table is 100% 0%

CSE333 lec 2 C.1// 03-30-11 // gribble

HWO results

question

| know what a hash table is
| have implemented a hash table

| know what a C pointer is

| have debugged pointer bugs

| kKnow what (* (x+5)) [5] = &y; means

100% 0%

/8%

91%

65%

54%

22%

9%

35%

46%

CSE333 lec 2 C.1// 03-30-11 // gribble

HWO results

unsigned char *mystery function(unsigned short bufsize) ({
unsigned char *tmp buf;

if (bufsize == 0)
return NULL;

tmp buf = malloc (bufsize);
if (tmp buf == NULL)
return NULL;

if (verify something() == 0)
return NULL;

return tmp buf;

CSE333 lec 2 C.1// 03-30-11 // gribble

HWO results

question

spot the bug: | don’t know 50%, 25% memory leak,
10% type error, 5% multiple of 4 issue, 10% other

Linux: 0% never, 85% < 1 year, 13% years, 2% expert
| know what an inode is 7% 93%

| know what a socket is 17% 83%

I’'ve written multithreaded code 89% 11%

CSE333 lec 2 C.1// 03-30-11 // gribble

HWO results

what is the air-speed velocity of an unladen swallow?

African or European?
24 miles an hour
8-11 m/s
it depends
500
Red. No, blue. AHHHH....

CSE333 lec 2 C.1// 03-30-11 // gribble

Today’s goals:

- overview of the C material you learned from cse351

Next two weeks’ goals:
- dive in deep into more advanced C topics
- start writing some C code

- Introduce you to interacting with the OS

CSE333 lec 2 C.1// 03-30-11 // gribble

Attribution

The slides I'll be using are a mixture of:
- my own material

- slides from other UW CSE courses (CSE303, CSE351; thanks

Magda Balazinska, Marty Stepp, John Zahorjan, Hal Perkins,
and othersl!)

- material from other universities’ courses (particularly CMU’s
15-213 and some Harvard courses; thanks Randy Bryant,
Dave O’Hallaron, Matt Welsh, and others!!)

All mistakes are mine. (No, really.)

CSE333 lec 2 C.1// 03-30-11 // gribble

THE

‘ SECOND EDITION

Created in 1972 by Dennis Ritchie

, , PROGRAMMING
- designed for creating system software LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

- portable across machine architectures

- most recently updated in 1999 (C99)
Characteristics

- low-level, smaller standard library than Java
- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

CSE333 lec 2 C.1// 03-30-11 // gribble

‘ SECOND EDITION

THE

Created in 1972 by Dennis Ritchie

PROGRAMMING

- designed for creating syW LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

This book was typeset (pic|tbl|
eqn|troff -ms) using an Autologic
APS-5 phototypesetter and a DEC
VAX 8550 running the 9th Edition of
the UNIX operating system.

- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

CSE333 lec 2 C.1// 03-30-11 // gribble

Mindset of C

“The PDP-11/45 on which our UNIX installation is
implemented is a:

- 16-bit word (8-bit byte) computer with
» 144K bytes of core memory; UNIX occupies 42K bytes
» a 1M byte fixed-head disk

» a moving-head disk with 40M byte disk packs
- The greater part of UNIX software is written in C.”

Dennis M. Ritchie and Ken Thompson

Bell Laboratories
1974

CSE333 lec 2 C.1// 03-30-11 // gribble

C workflow

Editor
(emacs, Vi)

or IDE
(eclipse)

C workflow

source
files
(.c, .h)

-
Editor

(emacs, Vi)

edit
D
e
(eclipse)

CSE333 lec 2 C.1// 03-30-11 // gribble

C workflow

source
files
(.c, .h)

-
Editor

(emacs, Vi)

edit
(e
or IDE
eclipse
-

(1ibz.a |

statically linked
libraries

[libc 2 so]

shared
libraries

CSE333 lec 2 C.1// 03-30-11 // gribble

C workflow

source
files
(.c, .h) object
files

Editor O

(emacs, Vi) compile

edlt
(e)—> (o0
or IDE
(eclipse)

R ()

statically linked shared
libraries libraries

CSE333 lec 2 C.1// 03-30-11 // gribble

C workflow

source
files
(.c, .h) object
files

Editor O

(emacs, Vi) compile executable

(o o o 25

edlt
or IDE

(eclipse) :
[libz : a] [libc ; so]

statically linked shared
libraries libraries

CSE333 lec 2 C.1// 03-30-11 // gribble

C workflow

source
files
(.c, .h) object
files

Editor O

(emacs, Vi) compile executable process

(eclipse) IiHKT IinkT
[libz B a] [libc ? so]

statically linked shared
libraries libraries

CSE333 lec 2 C.1// 03-30-11 // gribble

C workflow

execute,
debug,
profile,

source
files
(.c, .h) object

files
Editor L0 T

(emacs, Vi) compile executable process

’ edlt
or IDE

(eclipse) link link
- e - -
[libz B a] [libc 2 so]

statically linked shared
libraries libraries

CSE333 lec 2 C.1// 03-30-11 // gribble

From C to machine code

return i+j;

(dosum.c) }

C source file [int dosum(int i, int j) { \J

CSE333 lec 2 C.1// 03-30-11 // gribble

From C to machine code

int dosum(int i, int j) {

C source file i
return 1i+j;
(dosum.c) }

C compiler (gcc -S)

}

sebp

: sesp, %ebp
assembly source file 12 (3ebp) , %eax

(dosum.s) 8 (%ebp) , %eax
sebp

CSE333 lec 2 C.1// 03-30-11 // gribble

From C to machine code

int dosum(int i, int j) {

C compiler (gcc -S)

}

C source file i
return 1i+j;
(dosum.c) }

sebp

: sesp, %ebp
assembly source file 12 (3ebp) , %eax

(dosum.s) 8 (%ebp) , %eax
sebp

7 AN i
80483b0: 55 ¢

machine code 89 e5 8b 45
+— assembler (as
(dosum.o) Oc 03 45 08 (as)

5d c3

. CSE333 lec 2 C.1// 03-30-11 // gribble

Skipping assembly language

Most C compilers generate .o files (machine code) directly

- l.e., without actually saving the readable .s assembly file

[dosum. c\]—b gce -S —{dosum. SJ_> as dosum. o}

CSE333 lec 2 C.1// 03-30-11 // gribble

Multi-file C programs

int dosum(int i, int j) {

C source file Akt
return 1i+j;
(dosum.c) }

-
#include <stdio.h>

. int dosum(int i, int j);
C source file
(SUFﬂﬂLHTLC) int main(int argc, char **argv) {

printf ("$d\n", dosum(1l,2));
return O;

}
S

CSE333 lec 2 C.1// 03-30-11 // gribble

Multi-file C programs

C source file
(dosum.c)

C source file
(sumnum.c)

int dosum(int i, int j) {
return i+j;

}

#include <stdio.h>

int dosum(int i, int j);

dosum() is

int main(int arg &y **argv) {
printf ("$d\n", @)
return 0O;

}

—* implemented
iIN suMNuM.C

CSE333 lec 2 C.1// 03-30-11 // gribble

Multi-file C programs

C source file
(dosum.c)

C source file
(sumnum.c)

int dosum(int i, int j) {
return i+j;

}

#include <stdio.h>

{lint dosum(int i, int j);

int main(int arg &L **argv) {
printf ("$d\n", @)
return O;

this “prototype” of

dosum() tells gcc

about the types of
dosum’s arguments
and its return value

dosum() is

}

—* implemented
iIN suMNuM.C

CSE333 lec 2 C.1// 03-30-11 // gribble

Multi-file C programs

int dosum(int i, int j) {

C source file Akt
return 1i+j;
(dosum.c) }

-
#include <stdio.h>

. int dosum(int i, int j);
C source file
(SUFﬂﬂLHTLC) int main(int argc, char **argv) {

printf ("$d\n", dosum(1l,2));
return O;

}
S

CSE333 lec 2 C.1// 03-30-11 // gribble

Multi-file C programs

C source file
(dosum.c)

C source file
(sumnum.c)

int dosum(int i, int j) {
return i+j;

}

-
#include <stdio.h>

int dosum(int i, int j);

s(int argc, char **argv) {
(™ /2));

where is the

—» mplementation
of printf?

CSE333 lec 2 C.1// 03-30-11 // gribble

Multi-file C programs

int dosum(int i, int j) {

C source file Akt
return 1i+j;
(dosum.c) }

why do we need

#include <stdio.h>

int dosum(int i, int j);

C source file

' reR(int argc, char **argv) ({ :
(Sumnum.c) e 2)) ; where is the

—» mplementation
of printf?

CSE333 lec 2 C.1// 03-30-11 // gribble

Compiling multi-file programs

Multiple object files are linked to produce an executable
- standard libraries (libc, crtl, ...) are usually also linked in

- alibrary is just a pre-assembled collection of .o files

[dosum. c}—b gcc -C —P[dosum. o}\

(or gce)

d — [sumnum]

(e.g., libc)

CSE333 lec 2 C.1// 03-30-11 // gribble

Object files

sumnums, dosum.o are object files
- each contains machine code produced by the compiler

- each might contain references to external symbols
» variables and functions not defined in the associated .c file

» e.g., sSumnum.o contains code that relies on printf() and dosum(),
but these are defined In libc.a and dosum.o, respectively

- linking resolves these external symbols while smooshing
together object files and libraries

CSE333 lec 2 C.1// 03-30-11 // gribble

Let’'s dive into C itself

Things that are the same as Java
syntax for statements, control structures, function calls
types: int, double, char, long, float
type-casting syntax; float x = (float) 5 / 3;

expressions, operators, precedence

* [/ %+t —= = 4= —= *= [= %= < <= == I= > >= §& || !
scope (local scope is within a set of { } braces)

comments; /* comment */ // comment

CSE333 lec 2 C.1// 03-30-11 // gribble

Primitive types in C

see Sizeofs.c

Iﬂteger typeS type (ggtﬁﬁ) (gitﬁﬁ) 32 bit range

char 1 1 [0, 255]

- char, int
short int

ﬂoa’[iﬂg pOiI'Tt unsigned short int
int

3 ﬂOat, dOUDle unsigned int

[-32768,32767]

[0, 65535]

[-214748648,
2147483647]

[0, 4294967295]

[-2147483648,
2147483647]

[[9223372036854775808,
9223372036854775807]

long int

modifiers

long long int

short [int] =
double
|Ong [iﬂ’[, dOUble] long double

pointer

approx [10-38, 1038]

o|lr|lo|lr]lrlrn]lnv]d
o|lr|lo]|]lo]|r|lr]Nd]N

approx [10-308, 10308]

RN
N
-
(o)}

approx [10-4932, 104932]

D
oo

[0, 4294967295]

signed [char, int]

unsigned [char, int]

CSE333 lec 2 C.1// 03-30-11 // gribble

C99 extended integer types

Solve the conundrum of “how big is a long int?”

#include <stdint.h>

void foo(void) {
int8 t w;
intl6é t x;
int32 t y;
int64 t z;

uint8 t w;
...etc.

}

CSE333 lec 2 C.1// 03-30-11 // gribble

Similar to Java...

- variables
» must declare at the start of a function or block (changed in C99)

» need not be initialized before use (gcc -Wall will warn)

-
#include <stdio.h>

int main(int argc, char **argv) {

Tty =it
long z = xty;

Varscope.c f{’rintf (
int y =
printf (

}

int w = £

printf (\n", y, w);

return 2

CSESS3S [6C Z G 1 UJ%O-‘H // gribble

Similar to Java...

const
- a qualifier that indicates the variable’s value cannot change
- compiler will issue an If you try to violate this

- why is this qualifier useful?

p
#include <stdio.h>

int main(int argc, char **argv) {
const double MAX GPA = ;

consty.c

printe£ (\n", MAX GPA) ;

MAX GPA =

return 0O;

\} v

CSE333 lec 2 C.1// 03-30-11 // gribble

Similar to Java...

for loops

- can’t declare variables in the loop header (changed in c99)
if/else, while, and do/while loops

- no boolean type (changed in c99)

- any type can be used; 0 means false, everything else true

"] R
int 1;

for (1=0,; i<
if (1 % ==
printf (

CSE333 lec 2 C.1// 03-30-11 // gribble

Similar to Java...

-
void add pbv(int c) {

parameters / return value

- C always passes
arguments by value

- “pointers”
» lets you pass by reference
» more on these soon
» least intuitive part of C

» very dangerous part of C

pointy.c

c += ;
printf (\n", ¢);
}

void add pbr(int *c) {
*c += ;

printf (\n'", *c);
}

int main(int argc, char **argv) {
int x = 1;

printf (\n", x);

add pbv(x) ;
print£ (\n", x);

add pbr (&x) ;
printf (

return ;

CSE333 lec 2 C.1// 03-30-11 // gribble

Very different than Java

arrays

just a bare, contiguous block of memory of the correct size

an array of 10 ints requires 10 x 4 bytes = 40 bytes of
memory

arrays have no methods, do not know their own length

C doesn’t stop you from overstepping the end of an array!!

» many, many security bugs come from this

CSE333 lec 2 C.1// 03-30-11 // gribble

Very different than Java

strings
- array of char
- terminated by the NULL character \O’

- are not objects, have no methods; string.h has helpful utilities

\n|\O

J

CSE333 lec 2 C.1// 03-30-11 // gribble

Very different than Java

errors and exceptions

- C has no exceptions (no try / catch)

- errors are returned as integer error codes from functions
- makes error handling ugly and inelegant

crashes

- if you do something bad, you'’ll end up spraying bytes around
memory, hopefully causing a “segmentation fault” and crash

objects

- there aren’t any; struct is closest feature (set of fields)

CSE333 lec 2 C.1// 03-30-11 // gribble

Very different than Java

memory management
you must to worry about this; there is no garbage collector
local variables are allocated off of the stack
» freed when you return from the function
global and static variables are allocated in a data segment
» are freed when your program exits

you can allocate memory in the heap segment using malloc()
» you must free malloc’ed memory with free()

» failing to free is a leak, double-freeing is an error (hopefully crash)

CSE333 lec 2 C.1// 03-30-11 // gribble

Very different than Java

console I/0

- G standard library has portable routines for reading/writing

» scanf, printf

file 1/0O

- C standard library has portable routines for reading/writing
» fopen, fread, fwrite, fclose, etc.
» does buffering by default, is blocking by default

- OS provides (less portable) routines

» we'll be using these: more control over buffering, blocking

CSE333 lec 2 C.1// 03-30-11 // gribble

Very different than Java

network /O
- C standard library has no notion of network /O
- OS provides (somewhat portable) routines

- |lots of complexity lies here
» errors: network can fall
» performance: network can be slow

» concurrency: servers speak to thousands of clients simultaneously

CSE333 lec 2 C.1// 03-30-11 // gribble

Very different than Java

Libraries you can count on
C has very few compared to most other languages
no built-in trees, hash tables, linked lists, sort , etc.

you have to write many things on your own

» particularly data structures

» error prone, tedious, hard to build efficiently and portably

this is one of the main reasons C is a much less productive
language than Java, C++, python, or others

CSE333 lec 2 C.1// 03-30-11 // gribble

See you on Friday!

CSE333 lec 2 C.1// 03-30-11 // gribble

