
CSE333 lec 18 C++.7 // 05-11-11 // gribble

CSE 333
Lecture 18 -- smart pointers

Steve Gribble

Department of Computer Science & Engineering

University of Washington

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Administrivia

HW3 is due in a week!

- check out the discussion board for a few bugfixes in our code

In section tomorrow

- reinforcing using smart pointers

- how to understand and resolve g++ compiler errors

‣ STL issues, virtual function errors, const-y problems, ...

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Last time

We learned about slicing

- happens when a derived object is assigned to a base object

‣ prevents you from mixing base / derived classes in STL containers

Consiered using pointers or wrappers to deal with this

- pointers: lose ability to sort and must remember to delete

- wrapper: an object that stores a pointer to some other object

‣ can use copy & assign overloading so that STL does the right thing

‣ but, need reference counting to know when it’s safe to delete the
wrapped pointer

CSE333 lec 18 C++.7 // 05-11-11 // gribble

C++ smart pointers

A smart pointer is an object that stores a pointer to a
heap allocated object

- a smart pointer looks and behaves like a regular C++ pointer

‣ how? by overloading * and ->

- a smart pointer can help you manage memory

‣ the smart pointer will delete the pointed-to object at the right time

• when that is depends on what kind of smart pointer you use

‣ so, if you use a smart pointer correctly, you no longer have to
remember when to delete new’d memory

CSE333 lec 18 C++.7 // 05-11-11 // gribble

C++’s auto_ptr

The auto_ptr class is part of C++’s standard library

- it’s useful, simple, but limited

- an auto_ptr object takes ownership of a pointer

‣ when the auto_ptr object is delete’d or falls out of scope, its
destructor is invoked, just like any C++ object

‣ this destructor invokes delete on the owned pointer

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Using an auto_ptr
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::auto_ptr
#include <stdlib.h> // for EXIT_SUCCESS

void Leaky() {
 int *x = new int(5); // heap allocated
 (*x)++;
 std::cout << *x << std::endl;
}

void NotLeaky() {
 std::auto_ptr<int> x(new int(5)); // wrapped, heap-allocated
 (*x)++;
 std::cout << *x << std::endl;
}

int main(int argc, char **argv) {
 Leaky();
 NotLeaky();
 return EXIT_SUCCESS;
} autoexample1.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Why are auto_ptrs useful?

If you have many potential exit out of a function, it’s easy
to forget to call delete on all of them

- auto_ptr will delete its pointer when it falls out of scope

- thus, an auto_ptr also helps with exception safety

int NotLeaky() {
 std::auto_ptr<int> x(new int(5));

 lots of code, including several returns
 lots of code, including a potential exception throw
 lots of code

 return 1;
}

CSE333 lec 18 C++.7 // 05-11-11 // gribble

auto_ptr operations
#include <memory> // for std::auto_ptr
#include <stdlib.h> // for EXIT_SUCCESS

using namespace std;
typedef struct { int a, b; } IntPair;

int main(int argc, char **argv) {
 auto_ptr<int> x(new int(5));

 // Return a pointer to the pointed-to object.
 int *ptr = x.get();

 // Return a reference to the value of the pointed-to object.
 int val = *x;

 // Access a field or function of a pointed-to object.
 auto_ptr<IntPair> ip(new IntPair);
 ip->a = 100;

 // Reset the auto_ptr with a new heap-allocated object.
 x.reset(new int(1));

 // Release responsibility for freeing the pointed-to object.
 ptr = x.release();
 delete ptr;
 return EXIT_SUCCESS;
} autoexample2.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Transferring ownership
The copy and assignment operators transfer ownership

- the RHS auto_ptr’s pointer is set to NULL

- the LHS auto_ptr’s pointer now owns the pointer

int main(int argc, char **argv) {
 auto_ptr<int> x(new int(5));
 cout << "x: " << x.get() << endl;

 auto_ptr<int> y(x); // y takes ownership, x abdicates it
 cout << "x: " << x.get() << endl;
 cout << "y: " << y.get() << endl;

 auto_ptr<int> z(new int(10));

 // z delete's its old pointer and takes ownership of y's pointer.
 // y abdicates its ownership.
 z = y;

 return EXIT_SUCCESS;
} autoexample3.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

auto_ptr and STL

auto_ptrs cannot be used with STL containers :(

- a container may make copies of contained objects

‣ e.g., when you sort a vector, the quicksort pivot is a copy

- accessors will unwittingly NULL-ify the contained auto_ptr

void foo() {
 vector<auto_ptr<int> > ivec;
 ivec.push_back(auto_ptr<int>(new int(5)));
 ivec.push_back(auto_ptr<int>(new int(6))); // might make copies

 // Accessing a vector element makes a copy of it; therefore, this
 // transfers ownership out of the vector
 auto_ptr<int> z = ivec[0]; // ivec[0] now contains a NULL auto_ptr
}

CSE333 lec 18 C++.7 // 05-11-11 // gribble

auto_ptr and arrays

STL has no auto_ptr for arrays

- an auto_ptr always calls delete on its pointer, never delete[]

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Boost

Community supported, peer-reviewed, portable C++
libraries

- more containers, asynchronous I/O support, statistics, math,
graph algorithms, image processing, regular expressions,
serialization/marshalling, threading, and more

Already installed on attu, ugrad workstations, CSE VMs

- or, you can download and install from:

‣ http://www.boost.org/

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Boost smart pointers

The Boost library contains six variations of smart pointers

- scoped_ptr: non-transferrable ownership of a single object

- scoped_array: non-transferrable ownership of an array

- shared_ptr: shared, reference-counted ownership

- shared_array: same as shared_ptr, but for an array

- weak_ptr: similar to shared_ptr, but doesn’t count towards
the reference count

- intrusive_ptr: we won’t discuss in 333

CSE333 lec 18 C++.7 // 05-11-11 // gribble

scoped_ptr

scoped_ptr is similar to auto_ptr

- but a scoped_ptr doesn’t support copy or assignment

‣ therefore, you cannot transfer ownership of a scoped_ptr

‣ and therefore, you cannot use one with STL containers

Intended to be used to manage memory within a scope

- connotes that the managed resource is limited to some context

CSE333 lec 18 C++.7 // 05-11-11 // gribble

scoped_ptr example
#include <boost/scoped_ptr.hpp>
#include <stdlib.h>

class MyClass {
 public:
 MyClass(int *p) : sptr_(p) { }

 private:
 // A MyClass object’s sptr_ resource is freed when the object’s
 // destructor fires.
 boost::scoped_ptr<int> sptr_;
};

int main(int argc, char **argv) {
 // x’s resource is freed when main() exits.
 boost::scoped_ptr<int> x(new int(10));

 int *sevenptr = new int(7);
 MyClass mc(sevenptr);

 return EXIT_SUCCESS;
} scopedexample.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

scoped_array

Identical to scoped_ptr, but owns an array, not a pointer

#include <boost/scoped_array.hpp>
#include <stdlib.h>

int main(int argc, char **argv) {
 boost::scoped_array<int> x(new int[10]);
 x[0] = 1;
 x[1] = 2;

 return EXIT_SUCCESS;
} scopedarray.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

shared_ptr

A shared_ptr is similar to an auto_ptr

- but, the copy / assign operators increment a reference count rather
than transferring ownership

‣ after copy / assign, the two shared_ptr objects point to the same
pointed-to object, and the (shared) reference count is 2

- when a shared_ptr is destroyed, the reference count is decremented

‣ when the reference count hits zero, the pointed-to object is deleted

CSE333 lec 18 C++.7 // 05-11-11 // gribble

shared_ptr example

#include <iostream>
#include <boost/shared_ptr.hpp>
#include <stdlib.h>

int main(int argc, char **argv) {
 // x contains a pointer to an int and has reference count 1.
 boost::shared_ptr<int> x(new int(10));

 {
 // x and y now share the same pointer to an int, and they
 // share the reference count; the count is 2.
 boost::shared_ptr<int> y = x;
 std::cout << *y << std::endl;
 }
 // y fell out of scope and was destroyed. Therefore, the
 // reference count, which was previously seen by both x and y,
 // but now is seen only by x, is decremented to 1.

 return EXIT_SUCCESS;
} sharedexample.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

shared_ptrs and STL containers

Finally, something that works!

- it is safe to store shared_ptrs in containers, since copy/assign
maintain a shared reference count and pointer

but, what about ordering?

- a map is implemented as a binary tree

‣ therefore, it needs to order elements

‣ therefore, it needs elements to support the “<“ operator

- similarly, what about sorting a vector of shared_ptr<int>’s?

CSE333 lec 18 C++.7 // 05-11-11 // gribble

shared_ptr and “<“

a shared_ptr implements some comparison operators

- e.g., a shared_ptr implements the “<“ operator

- but, it doesn’t invoke “<“ on the pointed-to objects

‣ instead, it just promises a stable, strict ordering

‣ given two shared pointers, it will pick some ordering between them
(probably based on the pointer address, not the pointed-to value)

- this means you can use shared_ptrs as keys in maps, but you
have to use a slightly more complex form of the sort algorithm

‣ you have to provide sort with a comparison function

CSE333 lec 18 C++.7 // 05-11-11 // gribble

bool sortfunction(shared_ptr<int> x, shared_ptr<int> y) {
 return *x < *y;
}

bool printfunction(shared_ptr<int> x) {
 std::cout << *x << std::endl;
}

int main(int argc, char **argv) {
 vector<shared_ptr<int> > vec;

 vec.push_back(shared_ptr<int>(new int(9)));
 vec.push_back(shared_ptr<int>(new int(5)));
 vec.push_back(shared_ptr<int>(new int(7)));

 std::sort(vec.begin(), vec.end(), &sortfunction);
 std::for_each(vec.begin(), vec.end(), &printfunction);
 return EXIT_SUCCESS;
}

Example

sharedexample.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Putting it all together

see alltogether/

CSE333 lec 18 C++.7 // 05-11-11 // gribble

weak_ptr

If you used shared_ptr and have a cycle in the sharing
graph, the reference count will never hit zero

- a weak_ptr is just like a shared_ptr, but it doesn’t count
towards the reference count

- a weak_ptr breaks the cycle

‣ but, a weak_ptr can become dangling

CSE333 lec 18 C++.7 // 05-11-11 // gribble

cycle of shared_ptr’s

#include <boost/shared_ptr.hpp>

using boost::shared_ptr;

class A {
 public:
 shared_ptr<A> next;
 shared_ptr<A> prev;
};

int main(int argc, char **argv) {
 shared_ptr<A> head(new A());
 head->next = shared_ptr<A>(new A());
 head->next->prev = head;

 return 0;
}

head

next

prev

next

prev
0

1 0

2

2

strongcycle.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

breaking the cycle with weak_ptr

#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>

using boost::shared_ptr;
using boost::weak_ptr;

class A {
 public:
 shared_ptr<A> next;
 weak_ptr<A> prev;
};

int main(int argc, char **argv) {
 shared_ptr<A> head(new A());
 head->next = shared_ptr<A>(new A());
 head->next->prev = head;

 return 0;
}

head

next

prev

next

prev
0

1 0

1

1

weakcycle.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

using a weak_ptr
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <iostream>

int main(int argc, char **argv) {
 boost::weak_ptr<int> w;

 {
 boost::shared_ptr<int> x;
 {
 boost::shared_ptr<int> y(new int(10));
 w = y;
 x = w.lock();
 std::cout << *x << std::endl;
 }
 std::cout << *x << std::endl;
 }
 boost::shared_ptr<int> a = w.lock();
 std::cout << a << std::endl;
 return 0;
} usingweak.cc

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Exercise 1

Write a C++ program that:

- has a Base class called “Query” that contains a list of strings

- has a Derived class called “PhrasedQuery” that adds a list of
phrases (a phrase is a set of strings within quotation marks)

- uses a Boost shared_ptr to create a list of Queries

- populates the list with a mixture of Query and PhrasedQuery
objects

- prints all of the queries in the list

CSE333 lec 18 C++.7 // 05-11-11 // gribble

Exercise 2

Implement Triple, a templated class that contains three
“things.” In other words, it should behave like std::pair,
but it should hold three objects instead of two.

- instantiate several Triple that contains shared_ptr<int>’s

- insert the Triples into a vector

- reverse the vector

CSE333 lec 18 C++.7 // 05-11-11 // gribble

See you on Friday!

