
CSE333 lec 16 C++.5 // 05-04-11 // gribble

CSE 333
Lecture 16 - starting in on subclasses

Steve Gribble

Department of Computer Science & Engineering

University of Washington

CSE333 lec 16 C++.5 // 05-04-11 // gribble

Administrivia

HW3 is out today

- due in two weeks

- you can work solo, or in teams of two

Your midterm is...

- on Monday May 9th

‣ it covers C, C++ up to, and including, lec14

• DO ALL OF THE EXERCISES FROM LEC1 - LEC14!

Section tomorrow

- details on C++ subclasses, inheritance

CSE333 lec 16 C++.5 // 05-04-11 // gribble

Today

Go through HW3

- lots of details to understand and master

Start in on C++ inheritance

- huge thanks to Marty Stepp for his “portfolio” case study

CSE333 lec 16 C++.5 // 05-04-11 // gribble

Let’s build a stock portfolio

A portfolio represents a person’s financial investments

- each asset has a cost (how much was paid for it) and a
market value (how much it is worth)

‣ the difference is the profit (or loss)

- different assets compute market value in different ways

‣ stock: has a symbol (“GOOG”), a number of shares, share price
paid, and current share price

‣ dividend stock: is a stock that also has dividend payments

‣ cash: money; never incurs profit or loss. (hah!)

CSE333 lec 16 C++.5 // 05-04-11 // gribble

One possible design

One class per asset type

- Problem: redundancy

- Problem: cannot treat multiple investments the same way

‣ e.g., cannot put them in a single array or Vector

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

CSE333 lec 16 C++.5 // 05-04-11 // gribble

see initial_design/

CSE333 lec 16 C++.5 // 05-04-11 // gribble

Inheritance
A parent-child relationship between classes

- a child (derived class) extends a parent (base class)

Benefits:

- code reuse: subclasses inherit code from superclasses

- polymorphism

‣ ability to redefine existing behavior but preserve the interface

‣ children can override behavior of parent

‣ others can make calls on objects without knowing which part of the
inheritance tree it is in

- extensibility: children can add behavior

CSE333 lec 16 C++.5 // 05-04-11 // gribble

Better design

Stock

symbol_
total_shares_

total_cost_
current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()

Mutual Fund

symbol_
total_shares_
total_cost_

current_price_
assets_ []

GetMarketValue()
GetProfit()
GetCost()

CSE333 lec 16 C++.5 // 05-04-11 // gribble

Access specifiers

public: visible to all other classes

protected: visible to current class and its subclasses

private: visible only to the current class

declare a member as protected if:

- you don’t want random customers accessing them

‣ you want to be subclassed and to let subclasses access them

CSE333 lec 16 C++.5 // 05-04-11 // gribble

Public inheritance

- “public” inheritance

‣ anything that is [public, protected] in the base is [public, protected] in
the derived class

- derived class inherits almost all behavior from the base class

‣ not constructors and destructors

‣ not the assignment operator or copy constructor

#include "BaseClass.h"

class Name : public BaseClass {
 ...
};

CSE333 lec 16 C++.5 // 05-04-11 // gribble

fix DividendStock in next_design/

CSE333 lec 16 C++.5 // 05-04-11 // gribble

See you on Friday!

