CSE 332 Winter 2026
Lecture 9: AVL Trees pt. 2

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs
* Keys must be comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

Nalve attempts

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Heap O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)

AVL Tree O(logn) O(logn) O(logn)

Binary Search Tree

* Binary Tree
e Definition:
* Tree where each node has at most 2 children

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Conseguence: cannot have repeated values

Improving the worst case

* How can we get a better worst case running time?
e Add rules about the shape of our BST

* AVL Tree

* A BST with some shape rules
» Algorithms need to change to accommodate those

AVL Tree

* A Binary Search tree that maintains that the left and rlght subtrees of
every node have heights that differ t one.
* height of left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)
* Not too strong (works for any number of nodes)

e |dea of AVL Tree:

 When you insert/delete nodes, if tree is “out of balance” then modify the tree
* Modification = “rotation”

Find Operation (Same as BST)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;

Inserting into an AVL Tree

 Starts out the same way as BST:

* “IFind” where the new nede should go
e Putitin the right place (it will be a leaf)

 Next check the balance

* |f the tree is still balanced, you’re done!
* Otherwise we need to do rotations

Insert Operation (for BST) 6‘@

insert(keywalue, root){
insertHelper(key, value,@ G ° e

}
insertHelper(key, value, root){ °
if(root == null)
return new Node(key, value);
if (root.key < key)
root.right = insertHelper(key, value, root.right);
else
root.left = insertHelper(key, value, root.left);

return

} Note: Insert happens only at the leaves!

Insert Example

Insert Example

Is the tree still balanced?

To confirm we only need to
check nodes in the path from
root to the new node

Why? We assume the tree was
balanced before the insert, so
unchanged subtrees cannot be
unbalanced.

Insert Example ()

Insert Example

Not Balanced!
Node 9 is the “problem node” Height=4
Left and right children of node
9 are different by 2.

Idea: “shorten” the left
subtree, “lengthen” the right

Height=-1

. . Solution:
R I g ht ROtat I O n Take the subtree starting with the problem node,

A’Rotate” that tree to the right

Balanced!

Right Rotation

* We just inserted ¢, node a is the deepest “problem” node
* Make the left child the new root
* Make the old root the right child of the new

* Make the new root’s right subtree the old root’s left subtree

h+3, h+2

Right

Rotation

Right Rotation - Implementation
b=a.left

a.left=b.right
b.right=a

Running time: 0(1)

return b

h+3

Right
Rotation

Insert Example

Not Balanced! Multiple Problem Nodes

Here, nodes 11 and 16 are
problem nodes.

There may be multiple places
where we can do a rotation to
rebalance the tree, but the
deepest problem node always
works!

Left Rotation

Solution:
Take the subtree starting with the problem node,
“Rotate” that tree to the left

Balanced!

Left Rotation

* We just inserted ¢, node a is the deepest “problem” node

* Ma
* Ma
* Ma

Ke t
Ke t

Ke t

ne right child the new root
ne old root the left child of the new

ne new root’s left subtree the old root’s right subtree

Left
Rotation

Left Rotation (Implementation)
b=a.right

a.right=b.left

b.left=a

return b

h+3,~

Left
Rotation

Insertion Story So Far

e After insertion, update the heights of the node’s ancestors
* Check for unbalance

* If unbalanced then at the deepest unbalanced root:

* If the left subtree was deeper then rotate right This is incomplete!
* |f the right subtree was deeper then rotate left

There are some cases
where this doesn’t work!

Insertion Story So Far

e After insertion, update the heights of the node’s ancestors
* Check for unbalance

* If unbalanced then at the deepest unbalanced root:

e Case LL: If we inserted in the left subtree of the left child then rotate right

* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???

. Cas@ If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2
rotations!

Case LR

* From deepest problem node:
* Rotate left at the left child
* Rotate right at the problem node

Rotate Left

at5s

Rotate

Right at 9

©

Case LR in General

* We just inserted d, node a is the deepest “problem” node
* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child

* Rotate right at the unbalanced node
: h+3

Rotate
Right at a

Rotate
Left at b

b=a.left
Case LR Implementation c=b.right
b.right=c.left
a.left=c.right
c.right=a
c.left=b
return c

Rotate Rotate
Leftat b Right at a

Case RL in General

* We just inserted d, node a is the deepest “problem” node

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

* Rotate left at the unbalanced node

Rotate Rotate
Right at b Leftat a

Case RL Implementation

Rotate
Right at b

Rotate
Left at a

b=a.right
c=b.left
b.left=c.right
a.right=c.left
c.left=a
c.right=b
return c

Insert Summary

e After a BST insertion, update the heights of the node’s ancestors

* From ﬂeaf,to@, check if each node is balanced

* If a node is unbalanced then at the deepest unbalanced node:
[TCase LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left at
the left child and then rotate right at the root

e Case RL: If we inserted into the left subtree of the right child then: rotate right at
—the right child and then rotate left at the root

QDone after either reaching the root or applying one of the above cases

Insert Operation (for AVL)

insert(key, value, root){
root = insertHelper(key, value, root);
}
insertHelper(key, value, root){
if(root == null)
return new Node(key, value);
if (root.key < key)
root.right = insertHelper(key, value, root.right);
else
root.left = insertHelper(key, value, root.left);
if(isUnbalanced(root))
root=rotate(root);
return root;

Delete Summary

e Tldr: same cases, reverse direction of rotation, may need to repeat with
ancestors

e After a BST deletion, update the heights of the node’s ancestors
* From leaf to root, check if each node is unbalanced

* |f a node is unbalanced then at the deepest unbalanced node:
o Case LlL: If we deleted in the left subtree of the left child then: rotate left
e Case RR: If we deleted in the right subtree of the right child then: rotate right

* Case LR: If we deleted into the right subtree of the left child then: rotate right at the
left child and then rotate left at the root

* Case RL: If we deleted into the left subtree of the right child then: rotate left at the
right child and then rotate right at the root

* Continue checking until reach the root

Why is this @(logn) time?

* We getjpoor running times when height ~ n |

* Let M(h) be the minimum count of nodes jn an AVL tree of height h

——

* An AVL tree of height h must have one subtree of height h — 1

* This means the other subtree has height at least h — 2

e M(h)=Mh—-1)+Mh—-2)+1
|

/

Comparing to Fibonacci Sequence

(k) = M(h—1) + M(h —2) + 1
n)=Fn—-1)+Fn-2)

* Fibonacci Sequence

* SoM(h) > F(h)

. Fog\rargmrum-e‘l‘ h@z@

* ¢ being the golden ratio. ¢ > 1.6
* This means that an AVL tree of height h has at least ¢" nodes

(T~
* So a tree of n,nodes has height at most/log(n)
* Weneedn < ¢", sologyn < h (N
* All operations run in time O (logn)
 The maximum number of nodes for height h is 2"*1 — 1, so they are also Q(logn)

	Slide 1: CSE 332 Winter 2026 Lecture 9: AVL Trees pt. 2
	Slide 2: Dictionary (Map) ADT
	Slide 3: Naïve attempts
	Slide 4: Binary Search Tree
	Slide 5: Improving the worst case
	Slide 6: AVL Tree
	Slide 7: Find Operation (Same as BST)
	Slide 8: Inserting into an AVL Tree
	Slide 9: Insert Operation (for BST)
	Slide 10: Insert Example
	Slide 11: Insert Example
	Slide 12: Insert Example
	Slide 13: Insert Example
	Slide 14: Right Rotation
	Slide 15: Balanced!
	Slide 16: Right Rotation
	Slide 17: Right Rotation - Implementation
	Slide 18: Insert Example
	Slide 19: Not Balanced! Multiple Problem Nodes
	Slide 20: Left Rotation
	Slide 21: Balanced!
	Slide 22: Left Rotation
	Slide 23: Left Rotation (Implementation)
	Slide 24: Insertion Story So Far
	Slide 25: Insertion Story So Far
	Slide 26: Case LR
	Slide 27: Case LR in General
	Slide 28: Case LR Implementation
	Slide 29: Case RL in General
	Slide 30: Case RL Implementation
	Slide 31: Insert Summary
	Slide 32: Insert Operation (for AVL)
	Slide 33: Delete Summary
	Slide 34: Why is this cap theta open paren log n close paren time?
	Slide 35: Comparing to Fibonacci Sequence

