CSE 332 Winter 2026
Lecture 8: AVL Trees

Nathan Brunelle
http://www.cs.uw.edu/332



http://www.cs.uw.edu/332

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs
* Keys must be comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)



Nalve attempts

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Heap O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)

AVL Tree O(logn) O(logn) O(logn)



Binary Search Tree

* Binary Tree
e Definition:
* Tree where each node has at most 2 children

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Conseguence: cannot have repeated values



Are these BSTs?




Aside: Why not use an array?

* We represented a heap using an array, finding children/parents by
index

* We will represent BSTs with nodes and references. Why?
* We might have “gaps” in our tree

e Memory!
AL



Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;



Find Operation (iterative)

find(key, root){
while (root != Null && key != root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;



Insert Operation (recursive) 66@

insert(key, value, root){

root = insertHelper(key, value, root); G ° e
J

insertHelper(key, value, root){ °
if(root == null)

return new Node(key, value);
if (root.key < key)

root.right = insertHelper(key, value, root.right);
else

root.left = insertHelper(key, value, root.left);
return root;

} Note: Insert happens only at the leaves!



Insert Operation (iterative) a @

insert(key, value, root){

if (root == Null){ this.root = new Node(key, value); } G ° e

parent = Null;
while (root != Null && key !=root.key){ °
parent = root;
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!



Delete Operation (iterative) QOQ

delete(key, root){

while (root != Null && key !=root.key){ G ° e
if (key < root.key){ root = root.left; } ° e 0

else if (key > root.key){ root = root.right; }
}

if (root == Null){ return; }
// Now root is the node to delete, what happens next?



Delete — 3 Cases

* O Children (i.e. it’s a leaf)

* 1 Child
* Replace the deleted node with its child

e 2 Children

e Replace the deleted with the largest node to its left or else the smallest node
to its right



Finding the Max and Min aga

maxNode(root){
e Max Of 3 BST: if (root == Null){ return Null; } a e
. ' . while (root.right != Null){
° nght-mOSt Th|ng root = root.right;
} OO0
return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left != Null){
root = root.left;

}

return root;



Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } G
else if (key > root.key){ root = root.right; }

) O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right



Delete Operation (recursive) o o)

delete(key, root){

if (root == Null){ return; } // key not present G ° e
if (root.key == key){ ° e 0

if (root has no children) { return Null; }
if (root has one child) { return that child; }

if (root has two children) {return removeMax(root.left);}

}
if (root.key < key) { root.right = delete(key, root.right); }

else { root.left = delete(key, root.left); }



Worst Case Analysis

* For each of Find, insert, Delete:
* Worst case running time matches height of the tree

 What is the maximum height of a BST with n nodes?
* O(n)



Improving the worst case

* How can we get a better worst case running time?
e Add rules about the shape of our BST

* AVL Tree

* A BST with some shape rules
» Algorithms need to change to accommodate those



“Balanced” Binary Search Trees

* We get better running times by having “shorter” trees
* Trees get tall due to them being “sparse” (many one-child nodes)

* |dea: modify how we insert/delete to keep the tree more “full”
* Encourage Branches!



dea 1: Both Subtrees of Root have same
Nodes




dea 2: Both Subtrees of Root have same
neight




|dea 3: Both Subtrees of every Node have
same # Nodes




|dea 4: Both Subtrees of every Node have
same height



AVL Tree

* A Binary Search tree that maintains that the left and right subtrees of
every node have heights that differ by at most one.
* height of left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)
* Not too strong (works for any number of nodes)

e |dea of AVL Tree:

 When you insert/delete nodes, if tree is “out of balance” then modify the tree
* Modification = “rotation”



Is it an AVL Tree?




“Problem” Node
Its children’s heights
differ by more than 1

Not Balanced! ° 6 ‘ Balanced!



Using AVL Trees

Key =9

e Each node has: Value = "hello”
Height =3
* Key Left = Node 3
* Height

e Left child °
* Right child



Inserting into an AVL Tree

 Starts out the same way as BST:
* “Find” where the new node should go
e Putitin the right place (it will be a leaf)

 Next check the balance

* |f the tree is still balanced, you’re done!
* Otherwise we need to do rotations



Insert Example



Insert Example ()



Solution:
Take the subtree starting with the problem node,
“Rotate” that tree to the right

Not Balanced!




Balanced!




Right Rotation

* We just inserted ¢, node a is the deepest “problem” node
* Make the left child the new root
* Make the old root the right child of the new

* Make the new root’s right subtree the old root’s left subtree
h+3 h+2

Right
Rotation




Insert Example



Not Balanced!

Solution:
Take the subtree starting with the problem node,
“Rotate” that tree to the left




Balanced!



Left Rotation

* We just inserted ¢, node a is the deepest “problem” node
* Make the right child the new root
* Make the old root the left child of the new

* Make the new root’s left subtree the old root’s right subtree

h+3

h+ 2

Left
Rotation




Insertion Story So Far

e After insertion, update the heights of the node’s ancestors
* Check for unbalance

* If unbalanced then at the deepest unbalanced root

* If the left subtree was deeper then rotate right This is incomplete!

i Th
* If the right subtree was deeper then rotate left Wheerreeatﬁ;g?eirfats\?vzrkl

= = -




Insertion Story So Far

e After insertion, update the heights of the node’s ancestors
* Check for unbalance

* If unbalanced then at the deepest unbalanced root:
e Case LL: If we inserted in the left subtree of the left child then rotate right
* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???
* Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2
rotations!



Case LR

* From deepest problem node:
* Rotate left at the left child
* Rotate right at the problem node

Rotate Left

at5s

Rotate

Right at 9

©



Case LR in General

* We just inserted d, node a is the deepest “problem” node

* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child

* Rotate right at the unbalanced node

Rotate
Left at b

Right at a




Case RL in General

* We just inserted d, node a is the deepest “problem” node

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

 Rotate left at the unbalanced node
h+3

Rotate
Right at b Leftat a




Insert Summary

e After a BST insertion, update the heights of the node’s ancestors
* From leaf to root, check if each node is balanced

* If a node is unbalanced then at the deepest unbalanced node:
* Case LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left at
the left child and then rotate right at the root

e Case RL: If we inserted into the left subtree of the right child then: rotate right at
the right child and then rotate left at the root

* Done after either reaching the root or applying one of the above cases



Delete Summary

e Tldr: same cases, reverse direction of rotation, may need to repeat with
ancestors

e After a BST deletion, update the heights of the node’s ancestors
* From leaf to root, check if each node is unbalanced

* |f a node is unbalanced then at the deepest unbalanced node:
Case LL: If we deleted in the left subtree of the left child then: rotate left
Case RR: If we deleted in the right subtree of the right child then: rotate right

Case LR: If we deleted into the right subtree of the left child then: rotate right at the
left child and then rotate left at the root

Case RL: If we deleted into the left subtree of the right child then: rotate left at the
right child and then rotate right at the root

* Continue checking until reach the root



	Slide 1: CSE 332 Winter 2026 Lecture 8: AVL Trees
	Slide 2: Dictionary (Map) ADT
	Slide 3: Naïve attempts
	Slide 4: Binary Search Tree
	Slide 5: Are these BSTs?
	Slide 6: Aside: Why not use an array?
	Slide 7: Find Operation (recursive)
	Slide 8: Find Operation (iterative)
	Slide 9: Insert Operation (recursive)
	Slide 10: Insert Operation (iterative)
	Slide 11: Delete Operation (iterative)
	Slide 12: Delete – 3 Cases
	Slide 13: Finding the Max and Min
	Slide 14: Delete Operation (iterative)
	Slide 15: Delete Operation (recursive)
	Slide 16: Worst Case Analysis
	Slide 17: Improving the worst case
	Slide 18: “Balanced” Binary Search Trees
	Slide 19: Idea 1: Both Subtrees of Root have same # Nodes
	Slide 20: Idea 2: Both Subtrees of Root have same height
	Slide 21: Idea 3: Both Subtrees of every Node have same # Nodes
	Slide 22: Idea 4: Both Subtrees of every Node have same height
	Slide 23: AVL Tree
	Slide 24: Is it an AVL Tree?
	Slide 25: Is it an AVL Tree?
	Slide 26: Using AVL Trees
	Slide 27: Inserting into an AVL Tree
	Slide 28: Insert Example
	Slide 29: Insert Example
	Slide 30: Not Balanced!
	Slide 31: Balanced!
	Slide 32: Right Rotation
	Slide 33: Insert Example
	Slide 34: Not Balanced!
	Slide 35: Balanced!
	Slide 36: Left Rotation
	Slide 37: Insertion Story So Far
	Slide 38: Insertion Story So Far
	Slide 39: Case LR 
	Slide 40: Case LR in General
	Slide 41: Case RL in General
	Slide 42: Insert Summary
	Slide 43: Delete Summary

