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Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
Do some more non-recursive “work”
e Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
* Plus the total amount of non-recursive work done in that stack frame

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

* Called “chip and conquer”



Recursive List Summation
public int sum(int[] list){ ‘7~ZfVT///

return sum_helper(list, 9, list.size);

()7

}
private int sum_helper(int[] list, int low, int high){
if (low == high){ return 0; }

if (low == high- rn list[low]; }
int/ middle = (high+low)/D;

return, sum_helper(list, low, middle um_helper(list, middle, high);
} —
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Tree Method Summary: Chip and Conquer

* Recurrence looks like T(n) =iT(n@) + f(n)

* Use the recurrence to draw a tree
*/a js the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)
* Subtract b from the parent’s input size to get children’s input size

» Work dohe per node is given by applying f (n) to that node’s input size
-@eight of the tree is %

* Because that is the number of times we must subtract b until reaching a base case
* Answer to the question “how many times must we subtract b until we reach 0?”
* Any base case is a constant, so to reach a larger value would just be a constant change

* Use the tree to express running time as a series

* Adding work done for each node level-by-level
* |dentify a pattern to express work done at level i as a function of i
* Write a seriesusingi = 0 up to z

b
e Solve the series



Tree Method Summary: Divide and Conquer

* Recurrence looks like T(n) = aT (g) + f(n)

e Use the recurrence to draw a tree
* a is the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)
* Divide the parent’s input size by b to get children’s input size
* Work done per node is given by applying f (n) to that node’s input size

* Height of the tree i

* Because that is thehumber of times we must divide by b until reaching a base case
* Answer to the question “how many times must we divide by b until we reach 1?”
* Any base case is a constant, so to reach a larger value would just be a constant change
* Use the tree to express running time as a series
* Adding work done for each node level-by-level

* |dentify a pattern to express work done at level i as a function of i
* Write a seriesusingi = 0 up tolog, n

e Solve the series




Let’s do some more!

* For each, assume the base caseisn =1and T(1) =1
+ T(n) = 2T (3) +n

e T(n) = 2T (3) +n?

e T(n) = 2T (g) +1
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Solving T(n) = 2T (g) +1
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Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs
. Keys must be comparabli\

* Operations:

* insert(key, value)
e Adds the (ﬂ;ey,value) pair into the dictionary
 If the key already has a value, overwrite the old value

———

* Consequence: ‘Jieys cannot be repeated
| * find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)




Nalve attempts

Data Structure Time to find Time to delete

Unsorted Array
Unsorted Linked List
Sorted Array

Sorted Linked List
Heap

Binary Search Tree
(worst)

Binary Search Tree
(expected)

O(n)
O(n)
O(n)
O(n)
O(logn)
O(n)

O(logn)

O(n)
O(n)
O(logn)
0(n)
0(n)
0(n)

O(logn)

0(n)
O(n)
0(n)
O(n)
0(n)
0(n)

O(logn)



More Tree “Vocab” 6

* Traversal: 0 G

* An algorithm for “visiting/processing” every node in a tree
* Pre-Order Traversal: 6 ’

* Root, Left Subtree, Right Subtree
*DUS2B

* In-Order Traversal:
* Left Subtree, Root, Right Subtree
e SU2DB

e Post-Order Traversal
* Left Subtree, Right Subtree, Root
e S2UBD



Name that Traversall

AorderTraversal(root){ BorderTraversal(root){ CorderTraversal(root){

if (root.left != Null){ process(root); if (root.left 1= Null){
process(root.left); if (root.left != Null){ process(root.left);

} process(root.left); }

if (root.right != Null){ } process(root)
process(root.right); if (root.right != Null){ if (root.right != Null){

} process(root.right); process(root.right);

process(root); } }



Binary Search Tree

* Binary Tree
e Definition:
* Tree where each node has at most 2 children

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Conseguence: cannot have repeated values



Are these BSTs?




Aside: Why not use an array?

* We represented a heap using an array, finding children/parents by
index

* We will represent BSTs with nodes and references. Why?
* We might have “gaps” in our tree

e Memory!
AL



Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;



Find Operation (iterative)

find(key, root){
while (root != Null && key != root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;



Insert Operation (recursive) 66@

insert(key, value, root){

root = insertHelper(key, value, root); G ° e
J

insertHelper(key, value, root){ °
if(root == null)

return new Node(key, value);
if (root.key < key)

root.right = insertHelper(key, value, root.right);
else

root.left = insertHelper(key, value, root.left);
return root;

} Note: Insert happens only at the leaves!



Insert Operation (iterative) a @

insert(key, value, root){

if (root == Null){ this.root = new Node(key, value); } G ° e

parent = Null;
while (root != Null && key !=root.key){ °
parent = root;
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!



Delete Operation (iterative) QOQ

delete(key, root){

while (root != Null && key !=root.key){ G ° e
if (key < root.key){ root = root.left; } ° e 0

else if (key > root.key){ root = root.right; }
}

if (root == Null){ return; }
// Now root is the node to delete, what happens next?



Delete — 3 Cases

e O Children (i.e. it’s a leaf)

* 1 Child
* Replace the deleted node with its child

e 2 Children

e Replace the deleted with the largest node to its left or else the smallest node
to its right



Finding the Max and Min aga

maxNode(root){
e Max Of 3 BST: if (root == Null){ return Null; } a e
. ' . while (root.right != Null){
° nght-mOSt Th|ng root = root.right;
} OO0
return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left != Null){
root = root.left;

}

return root;



Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } G
else if (key > root.key){ root = root.right; }

) O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right



Delete Operation (recursive) o o)

delete(key, root){

if (root == Null){ return; } // key not present G ° e
if (root.key == key){ ° e 0

if (root has no children) { return Null; }
if (root has one child) { return that child; }

if (root has two children) {return removeMax(root.left);}

}
if (root.key < key) { root.right = delete(key, root.right); }

else { root.left = delete(key, root.left); }
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