CSE 332 Winter 2026
Lecture /: Recurrences,
Dictionaries, BSTs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
Do some more non-recursive “work”
e Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
* Plus the total amount of non-recursive work done in that stack frame

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

* Called “chip and conquer”

Recursive List Summation
public int sum(int[] list){ ‘7~ZfVT///

return sum_helper(list, 9, list.size);

()7

}
private int sum_helper(int[] list, int low, int high){
if (low == high){ return 0; }

if (low == high- rn list[low]; }
int/ middle = (high+low)/D;

return, sum_helper(list, low, middle um_helper(list, middle, high);
} —

Tree Method [

n
Red box represents a T(n) =2T (E) +1

problem instance

Blue value represents n - q 0 — Zi work per level
time spent at that level of —

recursion /\

n/4 ' [n/a || n/a Y n/a 1>é£zgznle\(els
Y N N N AN f recursion

1 1 1 1 ‘ 1 1) logzn
/ :
2.9 T(n) = 21

AL CED)

)\\/ =0

Tree Method Summary: Chip and Conquer

* Recurrence looks like T(n) =iT(n@) + f(n)

* Use the recurrence to draw a tree
*/a js the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)
* Subtract b from the parent’s input size to get children’s input size

» Work dohe per node is given by applying f (n) to that node’s input size
-@eight of the tree is %

* Because that is the number of times we must subtract b until reaching a base case
* Answer to the question “how many times must we subtract b until we reach 0?”
* Any base case is a constant, so to reach a larger value would just be a constant change

* Use the tree to express running time as a series

* Adding work done for each node level-by-level
* |dentify a pattern to express work done at level i as a function of i
* Write a seriesusingi = 0 up to z

b
e Solve the series

Tree Method Summary: Divide and Conquer

* Recurrence looks like T(n) = aT (g) + f(n)

e Use the recurrence to draw a tree
* a is the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)
* Divide the parent’s input size by b to get children’s input size
* Work done per node is given by applying f (n) to that node’s input size

* Height of the tree i

* Because that is thehumber of times we must divide by b until reaching a base case
* Answer to the question “how many times must we divide by b until we reach 1?”
* Any base case is a constant, so to reach a larger value would just be a constant change
* Use the tree to express running time as a series
* Adding work done for each node level-by-level

* |dentify a pattern to express work done at level i as a function of i
* Write a seriesusingi = 0 up tolog, n

e Solve the series

Let’s do some more!

* For each, assume the base caseisn =1and T(1) =1
+ T(n) = 2T (3) +n

e T(n) = 2T (3) +n?

e T(n) = 2T (g) +1

Tree Method

n
Red box represents a T(n) = 2T (E) n
problem instance
.

Blue value represents T(i /Tn) — 11 work per level

time spent at that level of

recursion /\
n

n/2 |3 n/?2 %
‘/n\ n L/n\ n>1 | |
n/4 |7 n/4 |7 | n/4 7| n/4 [082THIEVED

A /N AW AN of recursion

1) log, n

T(n) = z n

=0

(
Tree Method /i;{—) Y R
T(n)=2T(g)+n2 2"

L G
M | = 77 work per level

——| n/4 ™| n/4 n® n/4 " n/4 n_2>log2nleve|s
IS NS N NG /¢ | of recursion

(/1—
N
/Z—
%111111“. 111111) og, S

T(n) = Z?? _:)o/

=0

Solving T(n) = 2T (g) + n?

log)
-
=0
l%ﬁl)i
— 2. -
’ ;<2 O(mz)

S(4")

Tree Method)

Red box represents a T(n) =2T (8) +1

problem instance

1 :
Blue value represents n) ,:> Zl, Work per |eve|

time spent at that level of

recursion /\

n/8 | n/8 |
/\ /\
n/6t ' | nje4 |' | n/64 ' njea |! 1logapjevels
N /N S~ /| of recursion

1) logg n

T(n) = Z 21

=0

Solving T(n) = 2T (g) +1

[M]-
Q@.

o Finite Geometric Series A
AS =S =g -/

fa>1 Lo
S,, Z — /
S =)

n =

The s.er.ies The series The next term
multiplied by a in the series

(1+a+a’+-+ada (A+a+a?+--+a")1 qltl 1

The first term

13

[M]-
Q@.

o~
[l
o

Ifa <1

b

Finite Geometric Series

[
The series : .
L The series The next term The first term
multiplied by a in the series
\(1+a+a2+---+aL)a (1+a+a?+--+a")1 qltl 1
|

Solve for the series

14

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs
. Keys must be comparabli\

* Operations:

* insert(key, value)
e Adds the (ﬂ;ey,value) pair into the dictionary
 If the key already has a value, overwrite the old value

———

* Consequence: ‘Jieys cannot be repeated
| * find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

Nalve attempts

Data Structure Time to find Time to delete

Unsorted Array
Unsorted Linked List
Sorted Array

Sorted Linked List
Heap

Binary Search Tree
(worst)

Binary Search Tree
(expected)

O(n)
O(n)
O(n)
O(n)
O(logn)
O(n)

O(logn)

O(n)
O(n)
O(logn)
0(n)
0(n)
0(n)

O(logn)

0(n)
O(n)
0(n)
O(n)
0(n)
0(n)

O(logn)

More Tree “Vocab” 6

* Traversal: 0 G

* An algorithm for “visiting/processing” every node in a tree
* Pre-Order Traversal: 6 ’

* Root, Left Subtree, Right Subtree
*DUS2B

* In-Order Traversal:
* Left Subtree, Root, Right Subtree
e SU2DB

e Post-Order Traversal
* Left Subtree, Right Subtree, Root
e S2UBD

Name that Traversall

AorderTraversal(root){ BorderTraversal(root){ CorderTraversal(root){

if (root.left != Null){ process(root); if (root.left 1= Null){
process(root.left); if (root.left != Null){ process(root.left);

} process(root.left); }

if (root.right != Null){ } process(root)
process(root.right); if (root.right != Null){ if (root.right != Null){

} process(root.right); process(root.right);

process(root); } }

Binary Search Tree

* Binary Tree
e Definition:
* Tree where each node has at most 2 children

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Conseguence: cannot have repeated values

Are these BSTs?

Aside: Why not use an array?

* We represented a heap using an array, finding children/parents by
index

* We will represent BSTs with nodes and references. Why?
* We might have “gaps” in our tree

e Memory!
AL

Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;

Find Operation (iterative)

find(key, root){
while (root != Null && key != root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;

Insert Operation (recursive) 66@

insert(key, value, root){

root = insertHelper(key, value, root); G ° e
J

insertHelper(key, value, root){ °
if(root == null)

return new Node(key, value);
if (root.key < key)

root.right = insertHelper(key, value, root.right);
else

root.left = insertHelper(key, value, root.left);
return root;

} Note: Insert happens only at the leaves!

Insert Operation (iterative) a @

insert(key, value, root){

if (root == Null){ this.root = new Node(key, value); } G ° e

parent = Null;
while (root != Null && key !=root.key){ °
parent = root;
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!

Delete Operation (iterative) QOQ

delete(key, root){

while (root != Null && key !=root.key){ G ° e
if (key < root.key){ root = root.left; } ° e 0

else if (key > root.key){ root = root.right; }
}

if (root == Null){ return; }
// Now root is the node to delete, what happens next?

Delete — 3 Cases

e O Children (i.e. it’s a leaf)

* 1 Child
* Replace the deleted node with its child

e 2 Children

e Replace the deleted with the largest node to its left or else the smallest node
to its right

Finding the Max and Min aga

maxNode(root){
e Max Of 3 BST: if (root == Null){ return Null; } a e
. ' . while (root.right != Null){
° nght-mOSt Th|ng root = root.right;
} OO0
return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left != Null){
root = root.left;

}

return root;

Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } G
else if (key > root.key){ root = root.right; }

) O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right

Delete Operation (recursive) o o)

delete(key, root){

if (root == Null){ return; } // key not present G ° e
if (root.key == key){ ° e 0

if (root has no children) { return Null; }
if (root has one child) { return that child; }

if (root has two children) {return removeMax(root.left);}

}
if (root.key < key) { root.right = delete(key, root.right); }

else { root.left = delete(key, root.left); }

	Slide 1: CSE 332 Winter 2026 Lecture 7: Recurrences, Dictionaries, BSTs
	Slide 2: Analysis of Recursive Algorithms
	Slide 3: Recursive List Summation
	Slide 4: Tree Method
	Slide 5: Tree Method Summary: Chip and Conquer
	Slide 6: Tree Method Summary: Divide and Conquer
	Slide 7: Let’s do some more!
	Slide 8: Tree Method
	Slide 9: Tree Method
	Slide 10: Solving cap T of n , equals 2 cap T open paren n over 2 , close paren plus n squared
	Slide 11: Tree Method
	Slide 12: Solving cap T of n , equals 2 cap T open paren n over 8 , close paren plus 1
	Slide 13: Finite Geometric Series
	Slide 14: Finite Geometric Series
	Slide 15: Dictionary (Map) ADT
	Slide 16: Naïve attempts
	Slide 17: More Tree “Vocab”
	Slide 18: Name that Traversal!
	Slide 19: Binary Search Tree
	Slide 20: Are these BSTs?
	Slide 21: Aside: Why not use an array?
	Slide 22: Find Operation (recursive)
	Slide 23: Find Operation (iterative)
	Slide 24: Insert Operation (recursive)
	Slide 25: Insert Operation (iterative)
	Slide 26: Delete Operation (iterative)
	Slide 27: Delete – 3 Cases
	Slide 28: Finding the Max and Min
	Slide 29: Delete Operation (iterative)
	Slide 30: Delete Operation (recursive)

