CSE 332 Winter 2026
Lecture /: Recurrences,
Dictionaries, BSTs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
Do some more non-recursive “work”
e Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
* Plus the total amount of non-recursive work done in that stack frame

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

* Called “chip and conquer”

Recursive List Summation

A
public int sum(int[] list){ 7(0 - (D\T/ &)\)— (

return sum_helper(list, 0, list.size);
}
private int sum_helper(int[] list, int low, int high){
if (low == high){ return 0; }
if (low == high-1){ return list[low]; }
int middle = (high+low)/2;
return sum_helper(list, low, middle)ZE:}um_helper(list, middle, high);

} 1 2

Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion

T(n) = 2T (ﬁ) +“‘

n

Lo

2

C

/\

n/2

C

—

n/4 | n/4
A AN
1 1 1 1 1 cee

n/2

C

>

n/4 |°

n/4

s

AN

1

< CN)

Y

— 2% . c work per level

>10g2 n levels
of recursion

log, n

T(n) = Z AR

=1

o

Tree Method Summary: Ehl\ﬁ) and Conquer

* Recurrence looks like T'(n =21)T n—>b)+ f(n
1) = (n =) + /()
e Use the recurrence to draw_a tree
* a is the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)

 Subtract b from the parent’s input size to get children’s input size
« Work done per node is given by applying f(n) to that node’s input size

: . n
* Height of the tree is -
* Because that is themumber of times we must subtract b until reaching a base case

* Answer to the question “how many times must we subtract b until we reach 0?”
* Any base case is a constant, so to reach a larger value would just be a constant change

* Use the tree ta_express running time as a series
* Adding work done for each node level-by-level
* |dentify a pattern to express work done at level i as a function of i

. . . . n
eres using i = O up to -
* Solve the series

Tree Method Summary: Divide and Conquer

* Recurrence looks like T(n) = a (g) + f(n)

e Use the recurrence to draw a tree
* a is the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)
* Divide the parent’s input size by b to get children’s input size
* Work done per node is given by applying f (n) to that node’s input size

* Height of the tree '

* Because that is the ber of times we must divide by b until reaching a base case
* Answer to the question “how many times must we divide by b until we reach 1?”
* Any base case is a constant, so to reach a larger value would just be a constant change
* Use the tree to express running time as a series
* Adding work done for each node level-by-level

* |dentify a pattern to express work done at level i as a function of i
* Write a seriesusingi = 0 up tolog, n

e Solve the series

Let’s do some more!

* For each, assume the base caseisn =1and T(1) =1

* T(n) @ +n

-T(n)_ZT()+n
. T(n) = 2T(§)+1

Tree Method

n k — |
Red box represents a I Tln) = 2T (E) +n
problem instance
Blue value represents n n h) — 1 work per level
time spent at that IeveLof ‘ u
recursion ‘A}

S——

n/4 " n/4 "%ogz levels

NS
DS
S

1 1 1

(N .
Tree Method y),

//)
Red box represents a T(n) = 2T () LZL § L Z‘lL

problem instance —

A
Blue value represents n " h A = 77 w8rk per level

time spent at that level of

- 2
recursion
/2\ ‘ m

/\4 “~ A
n/4 " nja " nja "l nja 7 loganlevelsa G
SN T N /N of recursion

3 N
1 1 1 1 1 1 l # ('_, ’
1 1 1 1 1 1) log, n

T(n) = ?7?

Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion M\
n /ﬁ/ !

n

T(n) =2T(8)+1

n

1

|

n/64’ ' n/64
1 1]

n/8

1

.

n/64 |

n/64

7

/N

1

1

1

— 2! work per level
|y P

w levels

of recursion

L

y

gg N
T(n) =& 24

=1

ogg n
2. ?
i=

21 ggn

1
2
1
| 083)|
1
1

-

(1—2
g
nlogs 2 =

T(n)

Solving T(n) = 2T (g)

1=
Q@.

Finite Geometric Series

1=0 §4 — g l(//()(//)

Ifa>1
et)>q "

Ay

A
= g — |

n =

o The series The next term
multiplied by a in the series

(1+a+a’+-+ada (A+a+a?+--+a")1 qltl 1

The series _
The first term

13

[M]-
Q@.

o~
[l
o

Ifa <1

b

Finite Geometric Series

[
The series : .
L The series The next term The first term
multiplied by a in the series
\(1+a+a2+---+aL)a (1+a+a?+--+a")1 qltl 1
|

Solve for the series

14

Dictionary (Map) ADT

* Contents:
. f key+value pairs

o (K/emSt be comp%

* Operations:

e [insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a_value, overwrite the old value
* Consequence: Eeys cannot be repeated

 find(key) —

* Returns the value associated with the given key
+ deletelfey)

 Remove the key (and its associated value)

Nalve attempts

Data Structure Time to find Time to delete
e o(n

(_UnsertedArray/ (
(_Unsorted Linked LisLj 0(1) O(n
— 7 Sorted Array L_M @_(_IM)J
——*7 Sorted Linked List % O(n) O(n)
7 e G, (> [
Binary Search Tree PO(n O(n) O(n)
— /) (worst)
Binary Search Tree O(logn) O(logn) O(logn)

(expected)

More Tree “Vocab” 6

* Traversal: 0 G

* An algorithm for “visiting/processing” every node in a tree
* Pre-Order Traversal: 6 ’

* Root, Left Subtree, Right Subtree
*DUS2B

* In-Order Traversal:
* Left Subtree, Root, Right Subtree
e SU2DB

e Post-Order Traversal
* Left Subtree, Right Subtree, Root
e S2UBD

Name that Traversall

AorderTraversal(root){ BorderTraversal(root){ CorderTraversal(root){

if (root.left != Null){ process(root); if (root.left 1= Null){
process(root.left); if (root.left != Null){ process(root.left);

} process(root.left); }

if (root.right != Null){ } process(root)
process(root.right); if (root.right != Null){ if (root.right != Null){

} process(root.right); process(root.right);

process(root); } }

Binary Search Tree

* Binary Tree
e Definition:
* Tree where each node has at most 2 children

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Conseguence: cannot have repeated values

Are these BSTs?

Aside: Why not use an array?

* We represented a heap using an array, finding children/parents by
index

* We will represent BSTs with nodes and references. Why?
* We might have “gaps” in our tree

e Memory!
AL

Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;

Find Operation (iterative)

find(key, root){
while (root != Null && key != root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;

Insert Operation (recursive) 66@

insert(key, value, root){

root = insertHelper(key, value, root); G ° e
J

insertHelper(key, value, root){ °
if(root == null)

return new Node(key, value);
if (root.key < key)

root.right = insertHelper(key, value, root.right);
else

root.left = insertHelper(key, value, root.left);
return root;

} Note: Insert happens only at the leaves!

Insert Operation (iterative) a @

insert(key, value, root){

if (root == Null){ this.root = new Node(key, value); } G ° e

parent = Null;
while (root != Null && key !=root.key){ °
parent = root;
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!

Delete Operation (iterative) QOQ

delete(key, root){

while (root != Null && key !=root.key){ G ° e
if (key < root.key){ root = root.left; } ° e 0

else if (key > root.key){ root = root.right; }
}

if (root == Null){ return; }
// Now root is the node to delete, what happens next?

Delete — 3 Cases

e O Children (i.e. it’s a leaf)

* 1 Child
* Replace the deleted node with its child

e 2 Children

e Replace the deleted with the largest node to its left or else the smallest node
to its right

Finding the Max and Min aga

maxNode(root){
e Max Of 3 BST: if (root == Null){ return Null; } a e
. ' . while (root.right != Null){
° nght-mOSt Th|ng root = root.right;
} OO0
return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left != Null){
root = root.left;

}

return root;

Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } G
else if (key > root.key){ root = root.right; }

) O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right

Delete Operation (recursive) o o)

delete(key, root){

if (root == Null){ return; } // key not present G ° e
if (root.key == key){ ° e 0

if (root has no children) { return Null; }
if (root has one child) { return that child; }

if (root has two children) {return removeMax(root.left);}

}
if (root.key < key) { root.right = delete(key, root.right); }

else { root.left = delete(key, root.left); }

	Slide 1: CSE 332 Winter 2026 Lecture 7: Recurrences, Dictionaries, BSTs
	Slide 2: Analysis of Recursive Algorithms
	Slide 3: Recursive List Summation
	Slide 4: Tree Method
	Slide 5: Tree Method Summary: Chip and Conquer
	Slide 6: Tree Method Summary: Divide and Conquer
	Slide 7: Let’s do some more!
	Slide 8: Tree Method
	Slide 9: Tree Method
	Slide 10: Solving cap T of n , equals 2 cap T open paren n over 2 , close paren plus n squared
	Slide 11: Tree Method
	Slide 12: Solving cap T of n , equals 2 cap T open paren n over 8 , close paren plus 1
	Slide 13: Finite Geometric Series
	Slide 14: Finite Geometric Series
	Slide 15: Dictionary (Map) ADT
	Slide 16: Naïve attempts
	Slide 17: More Tree “Vocab”
	Slide 18: Name that Traversal!
	Slide 19: Binary Search Tree
	Slide 20: Are these BSTs?
	Slide 21: Aside: Why not use an array?
	Slide 22: Find Operation (recursive)
	Slide 23: Find Operation (iterative)
	Slide 24: Insert Operation (recursive)
	Slide 25: Insert Operation (iterative)
	Slide 26: Delete Operation (iterative)
	Slide 27: Delete – 3 Cases
	Slide 28: Finding the Max and Min
	Slide 29: Delete Operation (iterative)
	Slide 30: Delete Operation (recursive)

