
CSE 332 Winter 2026
Lecture 7: Recurrences,

Dictionaries, BSTs
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇 𝑛 = 𝑇 𝑝1 + 𝑇 𝑝2 + ⋯ + 𝑇 𝑝𝑥 + 𝑓(𝑛)
• The time it takes to run the algorithm on an input of size 𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done in that stack frame

• Usually:

• 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛

• Called “divide and conquer”

• 𝑇 𝑛 = 𝑇 𝑛 − 𝑐 + 𝑓 𝑛
• Called “chip and conquer”

Recursive List Summation

public int sum(int[] list){

return sum_helper(list, 0, list.size);

}

private int sum_helper(int[] list, int low, int high){

if (low == high){ return 0; }

if (low == high-1){ return list[low]; }

int middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}

Tree Method

 2𝑖 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 1

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

2𝑖

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

1

1 1

1 1 1 1

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Tree Method Summary: Chip and Conquer

• Recurrence looks like 𝑇 𝑛 = 𝑎𝑇 𝑛 − 𝑏 + 𝑓(𝑛)
• Use the recurrence to draw a tree

• 𝑎 is the branching factor of the tree (e.g. if 𝑎 = 2 then it’s a binary tree)
• Subtract 𝑏 from the parent’s input size to get children’s input size
• Work done per node is given by applying 𝑓 𝑛 to that node’s input size
• Height of the tree is

𝑛

𝑏
• Because that is the number of times we must subtract 𝑏 until reaching a base case
• Answer to the question “how many times must we subtract 𝑏 until we reach 0?”

• Any base case is a constant, so to reach a larger value would just be a constant change

• Use the tree to express running time as a series
• Adding work done for each node level-by-level
• Identify a pattern to express work done at level 𝑖 as a function of 𝑖
• Write a series using 𝑖 = 0 up to

𝑛

𝑏

• Solve the series

Tree Method Summary: Divide and Conquer

• Recurrence looks like 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

• Use the recurrence to draw a tree
• 𝑎 is the branching factor of the tree (e.g. if 𝑎 = 2 then it’s a binary tree)
• Divide the parent’s input size by 𝑏 to get children’s input size
• Work done per node is given by applying 𝑓 𝑛 to that node’s input size
• Height of the tree is log𝑏 𝑛

• Because that is the number of times we must divide by 𝑏 until reaching a base case
• Answer to the question “how many times must we divide by 𝑏 until we reach 1?”

• Any base case is a constant, so to reach a larger value would just be a constant change

• Use the tree to express running time as a series
• Adding work done for each node level-by-level
• Identify a pattern to express work done at level 𝑖 as a function of 𝑖
• Write a series using 𝑖 = 0 up to log𝑏 𝑛

• Solve the series

Let’s do some more!

• For each, assume the base case is 𝑛 = 1 and 𝑇 1 = 1

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛2

• 𝑇 𝑛 = 2𝑇
𝑛

8
+ 1

Tree Method

 𝑛 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Tree Method

 ? ? work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

? ?

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛2

𝑛2

4

𝑛2

4

𝑛2

16

𝑛2

16

𝑛2

16

𝑛2

16

1 1 1 1 1 1

Solving 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛
𝑛2

2𝑖

= 𝑛2 ⋅ ෍

𝑖=0

log2 𝑛
1

2

𝑖

Tree Method

 2𝑖 work per level

log8 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

8
 + 1

𝑇 𝑛 = ෍

𝑖=0

log8 𝑛

2𝑖

Τ𝑛 8 Τ𝑛 8

Τ𝑛 64 Τ𝑛 64 Τ𝑛 64 Τ𝑛 64

… … … …

1 1 1 … 1 1 1

1

1 1

1 1 1 1

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Solving 𝑇 𝑛 = 2𝑇
𝑛

8
+ 1

𝑇 𝑛 = ෍

𝑖=0

log8 𝑛

2𝑖

=
1 − 2log8 𝑛

1 − 2

= 2log8 𝑛 − 1

= 𝑛log8 2 − 1 = 𝑛
1
3 − 1

= Θ 𝑛
1
3

Finite Geometric Series

13

= −−

If 𝑎 > 1

The series
multiplied by 𝑎

The series The first term

1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 𝑎 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 1 𝑎𝐿+1 1

The next term
in the series

෍

𝑖=0

𝐿

𝑎𝑖

Finite Geometric Series

14

The series
multiplied by 𝑎

The series The first term

= −−

1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 𝑎 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 1 𝑎𝐿+1 1

The next term
in the series

If 𝑎 < 1

෍

𝑖=0

𝐿

𝑎𝑖

Solve for the series

Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)

Naïve attempts

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Heap Θ(𝑛) Θ 𝑛 Θ 𝑛

Binary Search Tree
(worst)

Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree
(expected)

Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

More Tree “Vocab”

• Traversal:
• An algorithm for “visiting/processing” every node in a tree

• Pre-Order Traversal:
• Root, Left Subtree, Right Subtree
• D U S 2 B

• In-Order Traversal:
• Left Subtree, Root, Right Subtree
• S U 2 D B

• Post-Order Traversal
• Left Subtree, Right Subtree, Root
• S 2 U B D

D

U B

S 2

Name that Traversal!

AorderTraversal(root){
 if (root.left != Null){
 process(root.left);
 }
 if (root.right != Null){
 process(root.right);
 }
 process(root);
}

BorderTraversal(root){
 process(root);
 if (root.left != Null){
 process(root.left);
 }
 if (root.right != Null){
 process(root.right);
 }
}

CorderTraversal(root){
 if (root.left != Null){
 process(root.left);
 }
 process(root)
 if (root.right != Null){
 process(root.right);
 }
}

Binary Search Tree

• Binary Tree
• Definition:

• Tree where each node has at most 2 children

• Order Property
• All keys in the left subtree are smaller than the root

• All keys in the right subtree are larger than the root

• Consequence: cannot have repeated values

7

3 10

1 6 8 16

0 2

Are these BSTs?

7

3 10

1 16

0

7

3

10

1

16

0

7

3 10

1 16

0

7

7

3 10

1 16

0

8

Aside: Why not use an array?

• We represented a heap using an array, finding children/parents by
index

• We will represent BSTs with nodes and references. Why?
• We might have “gaps” in our tree

• Memory!
• 2𝑛

Find Operation (recursive)
find(key, root){

 if (root == Null){

 return Null;

 {

 if (key == root.key){

 return root.value;

 }

 if (key < root.key){

 return find(key, root.left);

 }

 if (key > root.key){

 return find(key, root.right);

 }

 return Null;

}

7

3 10

1 16

0

6

Find Operation (iterative)
find(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){

 root = root.left;

 }

 else if (key > root.key){

 root = root.right;

 }

 }

 if (root == Null){

 return Null;

 }

 return root.value;

}

7

3 10

1 16

0

6

Insert Operation (recursive)
insert(key, value, root){

 root = insertHelper(key, value, root);

}

insertHelper(key, value, root){

 if(root == null)

 return new Node(key, value);

 if (root.key < key)

 root.right = insertHelper(key, value, root.right);

 else

 root.left = insertHelper(key, value, root.left);

 return root;

}

7

3 10

1 16

0

6

Note: Insert happens only at the leaves!

Insert Operation (iterative)
insert(key, value, root){

 if (root == Null){ this.root = new Node(key, value); }

 parent = Null;

 while (root != Null && key != root.key){

 parent = root;

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root != Null){ root.value = value; }

 else if (key < parent.key){ parent.left = new Node(key, value); }

 else{ parent.right = new Node (key, value); }

}

7

3 10

1 16

0

6

Note: Insert happens only at the leaves!

Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 // Now root is the node to delete, what happens next?

}

9

3 10

1 16

0

6

5 7

Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)

• 1 Child
• Replace the deleted node with its child

• 2 Children
• Replace the deleted with the largest node to its left or else the smallest node

to its right

9

3 10

1 16

0

6

5 7

Finding the Max and Min

• Max of a BST:
• Right-most Thing

• Min of a BST:
• Left-most Thing

9

3 10

1 16

0

6

5 7

maxNode(root){
 if (root == Null){ return Null; }
 while (root.right != Null){
 root = root.right;
 }
 return root;
}

minNode(root){
 if (root == Null){ return Null; }
 while (root.left != Null){
 root = root.left;
 }
 return root;
}

Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

 if (key < root.key){ root = root.left; }

 else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 if (root has no children){

 make parent point to Null Instead;

 }

 if (root has one child){

 make parent point to that child instead;

 }

 if (root has two children){

 make parent point to either the max from the left or min from the right

 }

}

9

3 10

1 16

0

6

5 7

Delete Operation (recursive)
delete(key, root){

 if (root == Null){ return; } // key not present

 if (root.key == key){

 if (root has no children) { return Null; }

 if (root has one child) { return that child; }

 if (root has two children) {return removeMax(root.left);}

 }

 if (root.key < key) { root.right = delete(key, root.right); }

 else { root.left = delete(key, root.left); }

}

9

3 10

1 16

0

6

5 7

	Slide 1: CSE 332 Winter 2026 Lecture 7: Recurrences, Dictionaries, BSTs
	Slide 2: Analysis of Recursive Algorithms
	Slide 3: Recursive List Summation
	Slide 4: Tree Method
	Slide 5: Tree Method Summary: Chip and Conquer
	Slide 6: Tree Method Summary: Divide and Conquer
	Slide 7: Let’s do some more!
	Slide 8: Tree Method
	Slide 9: Tree Method
	Slide 10: Solving cap T of n , equals 2 cap T open paren n over 2 , close paren plus n squared
	Slide 11: Tree Method
	Slide 12: Solving cap T of n , equals 2 cap T open paren n over 8 , close paren plus 1
	Slide 13: Finite Geometric Series
	Slide 14: Finite Geometric Series
	Slide 15: Dictionary (Map) ADT
	Slide 16: Naïve attempts
	Slide 17: More Tree “Vocab”
	Slide 18: Name that Traversal!
	Slide 19: Binary Search Tree
	Slide 20: Are these BSTs?
	Slide 21: Aside: Why not use an array?
	Slide 22: Find Operation (recursive)
	Slide 23: Find Operation (iterative)
	Slide 24: Insert Operation (recursive)
	Slide 25: Insert Operation (iterative)
	Slide 26: Delete Operation (iterative)
	Slide 27: Delete – 3 Cases
	Slide 28: Finding the Max and Min
	Slide 29: Delete Operation (iterative)
	Slide 30: Delete Operation (recursive)

