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Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇 𝑛 = 𝑇 𝑝1 + 𝑇 𝑝2 + ⋯ + 𝑇 𝑝𝑥 + 𝑓(𝑛)
• The time it takes to run the algorithm on an input of size 𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done in that stack frame

• Usually: 

• 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛

• Called “divide and conquer” 

• 𝑇 𝑛 = 𝑇 𝑛 − 𝑐 + 𝑓 𝑛
• Called “chip and conquer”



Recursive List Summation

public int sum(int[] list){

return sum_helper(list, 0, list.size);

}

private int sum_helper(int[] list, int low, int high){

if (low == high){ return 0; }

if (low == high-1){ return list[low]; }

int middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}



Tree Method
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Tree Method Summary: Chip and Conquer

• Recurrence looks like 𝑇 𝑛 = 𝑎𝑇 𝑛 − 𝑏 + 𝑓(𝑛)
• Use the recurrence to draw a tree

• 𝑎 is the branching factor of the tree (e.g. if 𝑎 = 2 then it’s a binary tree)
• Subtract 𝑏 from the parent’s input size to get children’s input size
• Work done per node is given by applying 𝑓 𝑛  to that node’s input size
• Height of the tree is 

𝑛

𝑏
• Because that is the number of times we must subtract 𝑏 until reaching a base case
• Answer to the question “how many times must we subtract 𝑏 until we reach 0?”

• Any base case is a constant, so to reach a larger value would just be a constant change

• Use the tree to express running time as a series
• Adding work done for each node level-by-level
• Identify a pattern to express work done at level 𝑖 as a function of 𝑖
• Write a series using 𝑖 = 0 up to 

𝑛

𝑏

• Solve the series



Tree Method Summary: Divide and Conquer

• Recurrence looks like 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

• Use the recurrence to draw a tree
• 𝑎 is the branching factor of the tree (e.g. if 𝑎 = 2 then it’s a binary tree)
• Divide the parent’s input size by 𝑏 to get children’s input size
• Work done per node is given by applying 𝑓 𝑛  to that node’s input size
• Height of the tree is log𝑏 𝑛

• Because that is the number of times we must divide by 𝑏 until reaching a base case
• Answer to the question “how many times must we divide by 𝑏 until we reach 1?”

• Any base case is a constant, so to reach a larger value would just be a constant change

• Use the tree to express running time as a series
• Adding work done for each node level-by-level
• Identify a pattern to express work done at level 𝑖 as a function of 𝑖
• Write a series using 𝑖 = 0 up to log𝑏 𝑛

• Solve the series



Let’s do some more!

• For each, assume the base case is 𝑛 = 1 and 𝑇 1 = 1

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛2

• 𝑇 𝑛 = 2𝑇
𝑛

8
+ 1



Tree Method
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Tree Method
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Solving 𝑇 𝑛 = 2𝑇
𝑛
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Tree Method
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Solving 𝑇 𝑛 = 2𝑇
𝑛
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Finite Geometric Series
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Finite Geometric Series
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Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)



Naïve attempts

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Heap Θ(𝑛) Θ 𝑛 Θ 𝑛

Binary Search Tree 
(worst)

Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree 
(expected)

Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)



More Tree “Vocab”

• Traversal:
• An algorithm for “visiting/processing” every node in a tree

• Pre-Order Traversal:
• Root, Left Subtree, Right Subtree
• D U S 2 B

• In-Order Traversal:
• Left Subtree, Root, Right Subtree
• S U 2 D B

• Post-Order Traversal
• Left Subtree, Right Subtree, Root
• S 2 U B D 

D

U B

S 2



Name that Traversal!

AorderTraversal(root){
 if (root.left != Null){
  process(root.left);
 }
 if (root.right != Null){
  process(root.right);
 }
 process(root);
}

BorderTraversal(root){
 process(root);
 if (root.left != Null){
  process(root.left);
 }
 if (root.right != Null){
  process(root.right);
 }
}

CorderTraversal(root){
 if (root.left != Null){
  process(root.left);
 }
 process(root)
 if (root.right != Null){
  process(root.right);
 }
}



Binary Search Tree

• Binary Tree
• Definition:

• Tree where each node has at most 2 children

• Order Property
• All keys in the left subtree are smaller than the root

• All keys in the right subtree are larger than the root

• Consequence: cannot have repeated values
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Are these BSTs?
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Aside: Why not use an array?

• We represented a heap using an array, finding children/parents by 
index

• We will represent BSTs with nodes and references. Why?
• We might have “gaps” in our tree

• Memory!
• 2𝑛



Find Operation (recursive)
find(key, root){

 if (root == Null){

  return Null;

 {

 if (key == root.key){

  return root.value;

 }

 if (key < root.key){

  return find(key, root.left);

 }

 if (key > root.key){

  return find(key, root.right);

 } 

 return Null;

}

7

3 10

1 16

0

6



Find Operation (iterative)
find(key, root){

 while (root != Null && key != root.key){

  if (key < root.key){

   root = root.left;

  }

  else if (key > root.key){

   root = root.right;

  }

 }

 if (root == Null){

  return Null;

 }

 return root.value;

}
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Insert Operation (recursive)
insert(key, value, root){

 root = insertHelper(key, value, root);  

}

insertHelper(key, value, root){

 if(root == null)

  return new Node(key, value);

 if (root.key < key)

  root.right = insertHelper(key, value, root.right);

 else

  root.left = insertHelper(key, value, root.left);

 return root;

}
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Note: Insert happens only at the leaves!



Insert Operation (iterative)
insert(key, value, root){

 if (root == Null){ this.root = new Node(key, value); }

 parent = Null;

 while (root != Null && key != root.key){

  parent = root;

  if (key < root.key){ root = root.left; }

  else if (key > root.key){ root = root.right; }

 }

 if (root != Null){ root.value = value; }

 else if (key < parent.key){ parent.left = new Node(key, value); }

 else{ parent.right = new Node (key, value); }

}
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Note: Insert happens only at the leaves!



Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

  if (key < root.key){ root = root.left; }

  else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 // Now root is the node to delete, what happens next? 

}
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Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)

• 1 Child
• Replace the deleted node with its child

• 2 Children
• Replace the deleted with the largest node to its left or else the smallest node 

to its right
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Finding the Max and Min

• Max of a BST:
• Right-most Thing

• Min of a BST:
• Left-most Thing
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maxNode(root){
 if (root == Null){ return Null; }
 while (root.right != Null){
  root = root.right;
 }
 return root;
}

minNode(root){
 if (root == Null){ return Null; }
 while (root.left != Null){
  root = root.left;
 }
 return root;
}



Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

  if (key < root.key){ root = root.left; }

  else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 if (root has no children){

  make parent point to Null Instead;

 }

 if (root has one child){

  make parent point to that child instead;

 }

 if (root has two children){

  make parent point to either the max from the left or min from the right

 }

}
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Delete Operation (recursive)
delete(key, root){

 if (root == Null){ return; } // key not present

 if (root.key == key){

  if (root has no children) { return Null; }

  if (root has one child) { return that child; }

  if (root has two children) {return removeMax(root.left);}

 }

 if (root.key < key) { root.right = delete(key, root.right); }

 else { root.left = delete(key, root.left); }

}
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