
CSE 332 Winter 2026
Lecture 6: Recurrences

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Recursive Binary Search

public static boolean binarySearch(List<Integer> lst, int k){

return binarySearch(lst, k, 0, lst.size());

}

private static boolean binarySearch(List<Integer> lst, int k, int start, int end){

if(start == end)

return false;

int mid = start + (end-start)/2;

if(lst.get(mid) == k){

return true;

} else if(lst.get(mid) > k){

return binarySearch(lst, k, start, mid);

} else{

return binarySearch(lst, k, mid+1, end);

}

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇 𝑛 = 𝑇 𝑝1 + 𝑇 𝑝2 + ⋯ + 𝑇 𝑝𝑥 + 𝑓(𝑛)
• The time it takes to run the algorithm on an input of size 𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done in that stack frame

• Usually:

• 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛

• Called “divide and conquer”

• 𝑇 𝑛 = 𝑇 𝑛 − 𝑐 + 𝑓 𝑛
• Called “chip and conquer”

How Efficient Is It?

• 𝑇 𝑛 = 1 + 𝑇
𝑛

2

• Base case: 𝑇 1 = 1

𝑇 𝑛 = “cost” of running the entire
algorithm on an array of length 𝑛

4

Let’s Solve the Recurrence!

𝑇 𝑛 = 1 + 𝑇(ൗ𝑛
2)

𝑇 1 = 1

1 + 𝑇(ൗ𝑛
4)

1 + 𝑇(ൗ𝑛
8)

1

Substitute until 𝑇(1)
So log2 𝑛 steps

𝑇 𝑛 = ෍

𝑖=1

log2𝑛

1 = log2 𝑛 𝑇 𝑛 ∈ Θ log 𝑛

5

Make our process “prettier”

• Draw a picture of the recursion

• Identify the work done per stack frame

• Add up all the work!
• Sum is the answer!

• In this case Θ(log2 𝑛)

𝑛

𝑛/2

𝑇 𝑛 = 𝑇
𝑛

2
+ 1

𝑛/4

𝑛/8

1

…

1

1

1

1

1

log2 𝑛 levels
of recursion

The “Tree Method”

Recursive Linear Search

public static boolean linearSearch(List<Integer> lst, int k){

return linearSearch(lst, k, 0, lst.size());

}

private static boolean linearSearch(List<Integer> lst, int k, int start, int end){

if(start == end){

return false;

} else if(lst.get(start) == k){

return true;

} else{

return linearSearch(lst, k, start+1, end);

}

}

4 5 6 7321 80 9

75 79 88 9042138 955 99

Make our method “prettier”

• Draw a picture of the recursion

• Identify the work done per stack frame

• Add up all the work!

𝑛

𝑛 − 1

𝑇 𝑛 = 𝑇 𝑛 − 1 + 1

𝑛 − 2

𝑛 − 3

1

…

1

1

1

1

1

𝑛 levels
of recursion

Running time: Θ(𝑛)

Recursive List Summation

public int sum(int[] list){

 return sum_helper(list, 0, list.size);

}

private int sum_helper(int[] list, int low, int high){

 if (low == high){ return 0; }

 if (low == high-1){ return list[low]; }

 int middle = (high+low)/2;

 return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}

Tree Method

 2𝑖 ⋅ 𝑐 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑐

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑐

𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Recursive List Summation

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

= 𝑐 ⋅ ෍

𝑖=1

log2 𝑛

2𝑖

= 𝑐
1 − 2log2 𝑛

1 − 2

= 𝑐 𝑛 − 1 = Θ(𝑛)

Tree Method Summary: Chip and Conquer

• Recurrence looks like 𝑇 𝑛 = 𝑎𝑇 𝑛 − 𝑏 + 𝑓(𝑛)
• Use the recurrence to draw a tree

• 𝑎 is the branching factor of the tree (e.g. if 𝑎 = 2 then it’s a binary tree)
• Subtract 𝑏 from the parent’s input size to get children’s input size
• Work done per node is given by applying 𝑓 𝑛 to that node’s input size
• Height of the tree is

𝑛

𝑏
• Because that is the number of times we must subtract 𝑏 until reaching a base case
• Answer to the question “how many times must we subtract 𝑏 until we reach 0?”

• Any base case is a constant, so to reach a larger value would just be a constant change

• Use the tree to express running time as a series
• Adding work done for each node level-by-level
• Identify a pattern to express work done at level 𝑖 as a function of 𝑖
• Write a series using 𝑖 = 0 up to

𝑛

𝑏

• Solve the series

Tree Method Summary: Divide and Conquer

• Recurrence looks like 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓(𝑛)

• Use the recurrence to draw a tree
• 𝑎 is the branching factor of the tree (e.g. if 𝑎 = 2 then it’s a binary tree)
• Divide the parent’s input size by 𝑏 to get children’s input size
• Work done per node is given by applying 𝑓 𝑛 to that node’s input size
• Height of the tree is log𝑏 𝑛

• Because that is the number of times we must divide by 𝑏 until reaching a base case
• Answer to the question “how many times must we divide by 𝑏 until we reach 1?”

• Any base case is a constant, so to reach a larger value would just be a constant change

• Use the tree to express running time as a series
• Adding work done for each node level-by-level
• Identify a pattern to express work done at level 𝑖 as a function of 𝑖
• Write a series using 𝑖 = 0 up to log𝑏 𝑛

• Solve the series

Let’s do some more!

• For each, assume the base case is 𝑛 = 1 and 𝑇 1 = 1

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛2

• 𝑇 𝑛 = 2𝑇
𝑛

8
+ 1

Tree Method

 𝑛 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Tree Method

 ? ? work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛2

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

? ?

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛2

𝑛2

4

𝑛2

4

𝑛2

16

𝑛2

16

𝑛2

16

𝑛2

16

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Solving 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛2

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛
𝑛2

2𝑖

= 𝑛2 ⋅ ෍

𝑖=1

log2 𝑛
1

2

𝑖

Tree Method

 2𝑖 work per level

log8 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

8
 + 1

𝑇 𝑛 = ෍

𝑖=1

log8 𝑛

2𝑖

Τ𝑛 8 Τ𝑛 8

Τ𝑛 64 Τ𝑛 64 Τ𝑛 64 Τ𝑛 64

… … … …

1 1 1 … 1 1 1

1

1 1

1 1 1 1

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Solving 𝑇 𝑛 = 2𝑇
𝑛

8
+ 1

𝑇 𝑛 = ෍

𝑖=1

log8 𝑛

2𝑖

=
1 − 2log8 𝑛

1 − 2

= 2log8 𝑛 − 1

= 𝑛log8 2 = 𝑛
1
3

Finite Geometric Series

20

= −−

If 𝑎 > 1

The series
multiplied by 𝑎

The series The first term

1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 𝑎 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 1 𝑎𝐿+1 1

The next term
in the series

෍

𝑖=0

𝐿

𝑎𝑖

Finite Geometric Series

21

The series
multiplied by 𝑎

The series The first term

= −−

1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 𝑎 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝐿 1 𝑎𝐿+1 1

The next term
in the series

If 𝑎 < 1

෍

𝑖=0

𝐿

𝑎𝑖

Solve for the series

	Slide 1: CSE 332 Winter 2026 Lecture 6: Recurrences
	Slide 2: Recursive Binary Search
	Slide 3: Analysis of Recursive Algorithms
	Slide 4: How Efficient Is It?
	Slide 5: Let’s Solve the Recurrence!
	Slide 6: Make our process “prettier”
	Slide 7: Recursive Linear Search
	Slide 8: Make our method “prettier”
	Slide 9: Recursive List Summation
	Slide 10: Tree Method
	Slide 11: Recursive List Summation
	Slide 12: Tree Method Summary: Chip and Conquer
	Slide 13: Tree Method Summary: Divide and Conquer
	Slide 14: Let’s do some more!
	Slide 15: Tree Method
	Slide 16: Tree Method
	Slide 17: Solving cap T of n , equals 2 cap T open paren n over 2 , close paren plus n squared
	Slide 18: Tree Method
	Slide 19: Solving cap T of n , equals 2 cap T open paren n over 8 , close paren plus 1
	Slide 20: Finite Geometric Series
	Slide 21: Finite Geometric Series

