CSE 332 Winter 2026
Lecture 6: Recurrences

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Recursive Binary Search

5 8 |13 | 42 | 75

79

88

90

95

99

0 1 2 3 4
public static boolean binarySearch(List<Integer> 1lst, int k){

return binarySearch(1lst, k, 0, lst.size());
}
private static boolean binarySearch(List<Integer> 1lst, int k, int start, int end){
if(start == end)
return false;
int mid = start + (end-start)/2;
if(lst.get(mid) == k){
return true;
} else if(lst.get(mid) > k){
return binarySearch(1lst, k, start, mid);
} else{
return binarySearch(1lst, k, mid+1, end);

Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work”
* Do one or more recursive calls on some portion of your input
Do some more non-recursive “work”
e Repeat until you reach a base case

* Runningtime: T(n) =T(p,) + T(p,) + -+ T(p,) + f(n)
* The time it takes to run the algorithm on an input of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
* Plus the total amount of non-recursive work done in that stack frame

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(n) =T(n—c)+ f(n)

* Called “chip and conquer”

How Efficient Is It?

n T(n) = “cost” of running the entire
* T(n) =1+T ([ED algorithm on an array of length n

* Basecase:T(1) =1

Let’s Solve the Recurrence!
T(1) =1 _
T(n)]

__Substitute until T(1)
So log, n steps

T(n) = z 1 =1log,n T(n) € O(logn)

5

n
Make our process “prettier” T =7(z)+1

* Draw a picture of the recursion n b
* |dentify the work done per stack frame ! .
* Add up all the work! n/lZ
e Sum is the answer! n/4 1
* In this case ©(log, n) I > log, n levels
. of recursion
n/8
\
1

Recursive Linear Search

5

8

13

42

75

79

88

90

95

99

0

1

public static boolean linearSearch(List<Integer> lst, int k){

return linearSearch(1lst, k, 0, 1lst.size());

}

private static boolean linearSearch(List<Integer> 1lst, int k, int start, int end){

if(start == end){
return false;

} else if(lst.get(start) == k){
return true;

} else{

return linearSearch(1lst, k, start+l, end);

(S, Tm)=Tn—1)+1
Make our method “prettier A

* Draw a picture of the recursion n b
* |dentify the work done per stack frame ! .
e Add up all the work! n i 1
1
n—2 > n levels
| 3 | of recursion
" — .
° ° &
Running time: 0(n)
1

Recursive List Summation

public int sum(int[] list){
return sum_helper(list, 0, list.size);
}
private int sum_helper(int[] list, int low, int high){
if (low == high){ return 0; }
if (low == high-1){ return list[low]; }
int middle = (high+low)/2;
return sum_helper(list, low, middle) + sum_helper(list, middle, high);

Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion

T(n) = ZT(

n

C

n
2

/\

n/2

C

—

n/4

C

n/4

AN

I

)+

n/2 ¢

>

n/4 ° n/4
A NN
1 1 1

— 2% . c work per level

>10g2 n levels
of recursion

log, n

T(n) = Z AR

=1

a

Recursive List Summation

log, n

T(n) = Zzi-c

=1

log, n

= C - 2 Zi

=1

1_210g2n
()

=c(n—1) =0(n)

Tree Method Summary: Chip and Conquer

 Recurrence looks like T(n) = aT(n — b) + f(n)

Use the recurrence to draw a tree
* a is the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)
e Subtract b from the parent’s input size to get children’s input size
* Work done per node is given by applying f (n) to that node’s input size
* Height of the tree is %

* Because that is the number of times we must subtract b until reaching a base case
* Answer to the question “how many times must we subtract b until we reach 0?”
* Any base case is a constant, so to reach a larger value would just be a constant change
Use the tree to express running time as a series
* Adding work done for each node level-by-level
* |dentify a pattern to express work done at level i as a function of i

* Write a series using i = 0 up to%

e Solve the series

Tree Method Summary: Divide and Conquer

* Recurrence looks like T(n) = aT (g) + f(n)

* Use the recurrence to draw a tree
* a is the branching factor of the tree (e.g. if a = 2 then it’s a binary tree)
* Divide the parent’s input size by b to get children’s input size

* Work done per node is given by applying f (n) to that node’s input size
* Height of the tree is log, n
* Because that is the number of times we must divide by b until reaching a base case
* Answer to the question “how many times must we divide by b until we reach 1?”
* Any base case is a constant, so to reach a larger value would just be a constant change
* Use the tree to express running time as a series
* Adding work done for each node level-by-level

* |dentify a pattern to express work done at level i as a function of i
* Write a seriesusingi = 0 up tolog, n

e Solve the series

Let’s do some more!

* For each, assume the base caseisn =1and T(1) =1
+ T(n) = 2T (3) +n

e T(n) = 2T (3) +n?

e T(n) = 2T (g) +1

Tree Method

n
Red box represents a T(n) = 2T (—) +n

problem instance

Blue value represents n n) — 11 work per level
time spent at that level of

recursion /\

n/2 g n/2 %
S e DS L el
n/4 7 | n/4 |7 | n/4 5 n/4 (08271 I€VES

Y N AN AN /. | of recursion

1) log, n

T(n) = z n

=1

Tree Method

n
Red box represents a T(n) = 2T (—) + n?

problem instance

Blue value represents n)
time spent at that level of

recursion /\
2

= 77 work per level

n/4 ™| n/4 | n/4 " n/4 n? >log2nleve|s
S TN N /10| ofrecursion
1

1 1

1 1 | 1 | e 1 "1 M1 !

) log, n

T(n) = Z ?7?

=1

n 2
Solving T(n) = 2T (E) +n

Tree Method)

Red box represents a T(n) =2T (8) +1

problem instance

Blue value represents n ! 0 — 2L work per level
time spent at that level of

recursion /\

n/8 | n/8 |

/\ /\
n/64 ' n/64 |' | n/64 '| n/64 | >10g8n|eve|s
N AN /N, | ofrecursion

1) logg n

T(n) = Z 21

=1

Solving T(n) = 2T (g) +1

logg n

T =) 2
=1

1_210g8n

-(5=)

— 210g8n —1

= nlOgS 2 — n3

gl

Finite Geometric Series

Ifa>1

n =

The s.er.ies The series The next term
multiplied by a in the series

(1+a+a’+-+ada (A+a+a?+--+a")1 qltl 1

The first term

[M]-
Q@.

o~
[l
o

Ifa <1

b

Finite Geometric Series

[
The series : .
L The series The next term The first term
multiplied by a in the series
\(1+a+a2+---+aL)a (1+a+a?+--+a")1 qltl 1
|

Solve for the series

21

	Slide 1: CSE 332 Winter 2026 Lecture 6: Recurrences
	Slide 2: Recursive Binary Search
	Slide 3: Analysis of Recursive Algorithms
	Slide 4: How Efficient Is It?
	Slide 5: Let’s Solve the Recurrence!
	Slide 6: Make our process “prettier”
	Slide 7: Recursive Linear Search
	Slide 8: Make our method “prettier”
	Slide 9: Recursive List Summation
	Slide 10: Tree Method
	Slide 11: Recursive List Summation
	Slide 12: Tree Method Summary: Chip and Conquer
	Slide 13: Tree Method Summary: Divide and Conquer
	Slide 14: Let’s do some more!
	Slide 15: Tree Method
	Slide 16: Tree Method
	Slide 17: Solving cap T of n , equals 2 cap T open paren n over 2 , close paren plus n squared
	Slide 18: Tree Method
	Slide 19: Solving cap T of n , equals 2 cap T open paren n over 8 , close paren plus 1
	Slide 20: Finite Geometric Series
	Slide 21: Finite Geometric Series

