

CSE 332 Winter 2026

Lecture 5: Priority Queues

Nathan Brunelle

<http://www.cs.uw.edu/332>

ADT: Priority Queue

- What is it?
 - A collection of items and their “priorities”
 - Allows quick access/removal to the “top priority” thing
 - Usually a smaller priority value means the item is “more important”
- What Operations do we need?
 - `insert(item, priority)`
 - Add a new item to the PQ with indicated priority
 - `extract`
 - Remove and return the “top priority” item from the queue
 - Usually the item with the smallest priority value
 - `IsEmpty`
 - Indicate whether or not there are items still on the queue
- Note: the “priority” value can be any type/class so long as it’s comparable (i.e. you can use “`<`” or “`compareTo`” with it)

Applications?

- ER
- Operating systems allocating resources
- Allocation of power to devices on a vehicle
- Homework
- Airplane boarding

Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to extract
Unsorted Array	1	n
Unsorted Linked List	1	n
Sorted Array	n	1
Sorted Linked List	n	
Binary Search Tree	n	n

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we'd do an amortized analysis, but get the same answers...)

Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to extract
Unsorted Array	$\Theta(1)$	$\Theta(n)$
Unsorted Linked List	$\Theta(1)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(1)$
Sorted Linked List	$\Theta(n)$	$\Theta(1)$
Binary Search Tree	$\Theta(n)$	$\Theta(n)$

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we'd do an amortized analysis, but get the same answers...)

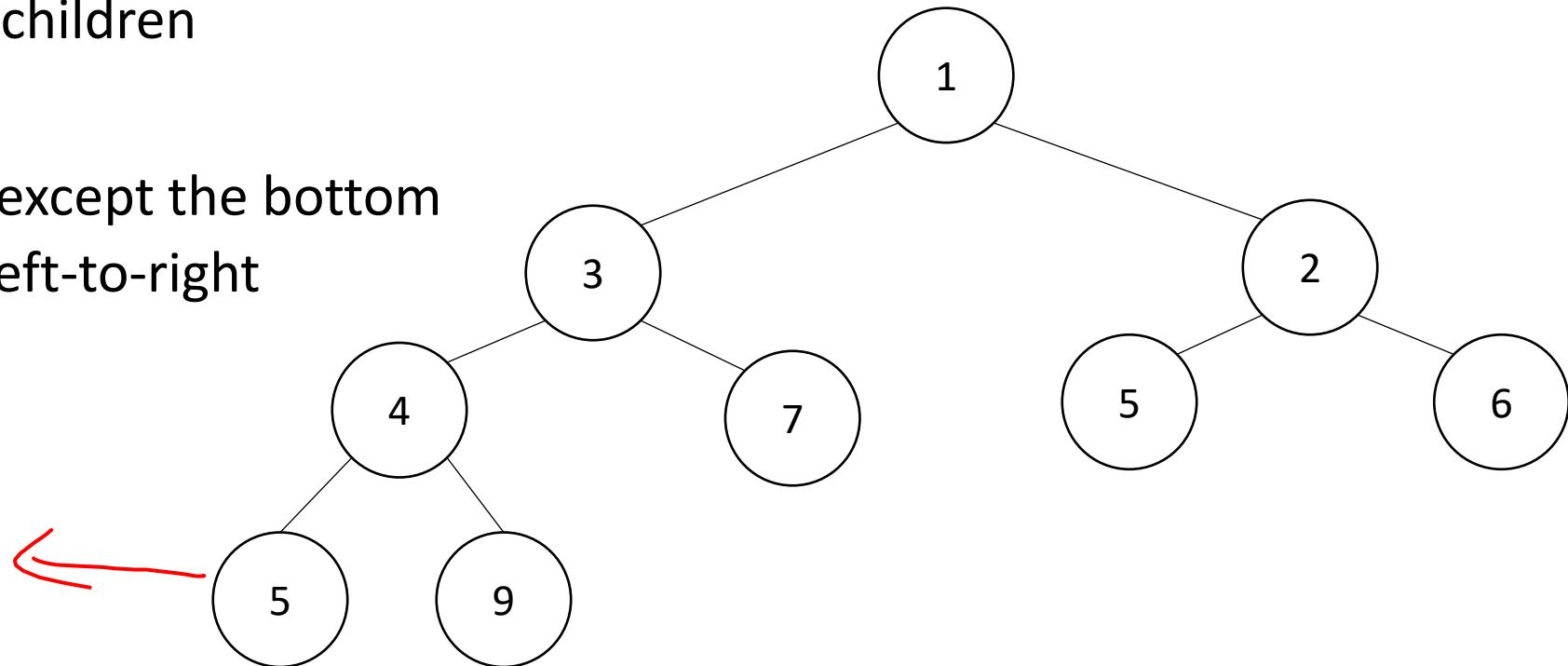
Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to extract
Unsorted Array	$\Theta(1)$	$\Theta(n)$
Unsorted Linked List	$\Theta(1)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(1)$
Sorted Linked List	$\Theta(n)$	$\Theta(1)$
Binary Search Tree	$\Theta(n)$	$\Theta(n)$
Binary Heap	$\Theta(\log n)$	$\Theta(\log n)$

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we'd do an amortized analysis, but get the same answers...)

Trees for Heaps

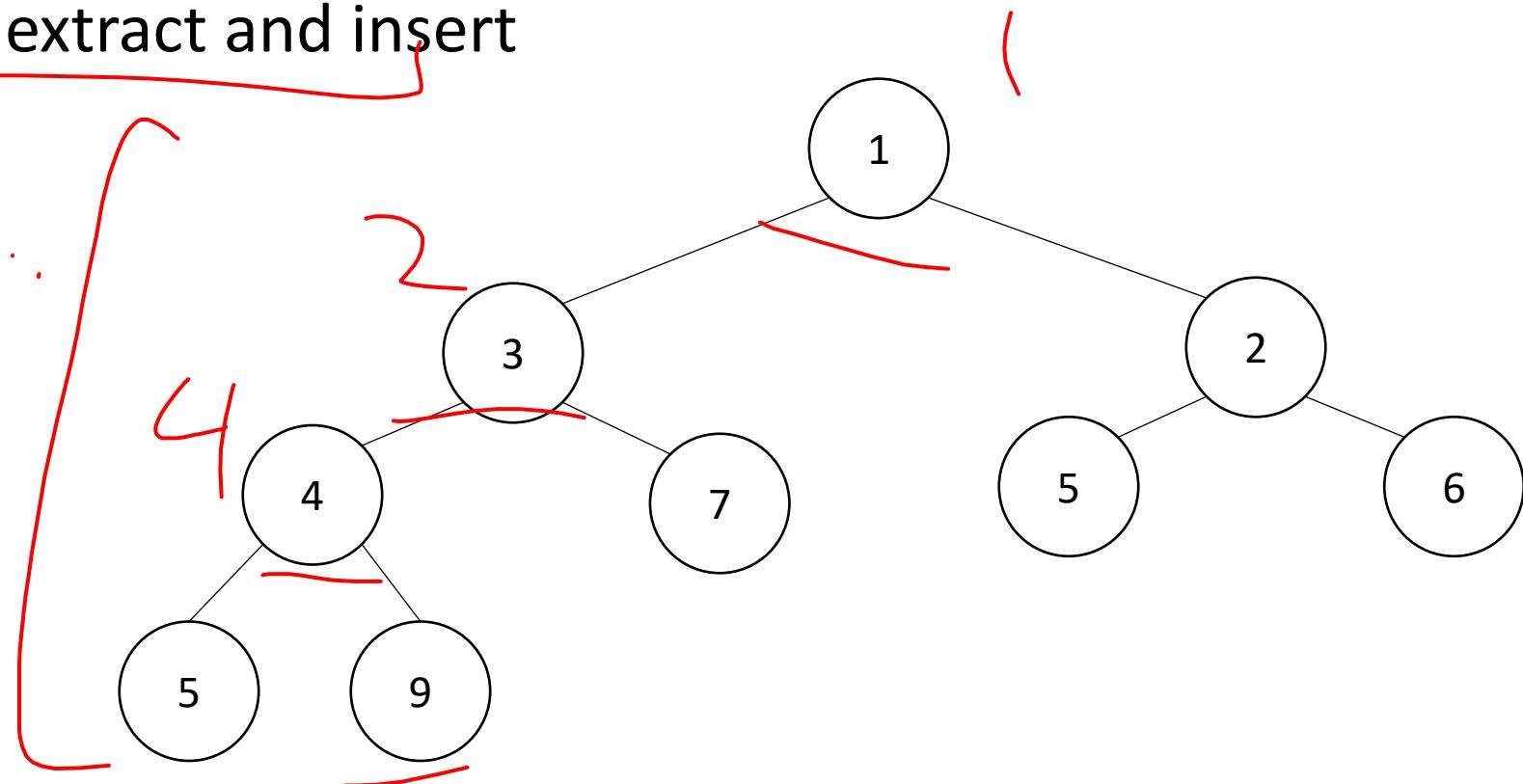
- Binary Trees:
 - The branching factor is 2
 - Every node has ≤ 2 children
- Complete Tree:
 - All “layers” are full, except the bottom
 - Bottom layer filled left-to-right



Priority Queue Data Structure – Heap Idea

- Idea: Maintain a limited amount of order
- $\Theta(\log n)$ worst case for extract and insert

$1 + 2 + 4 + 8 + 16 + \dots$

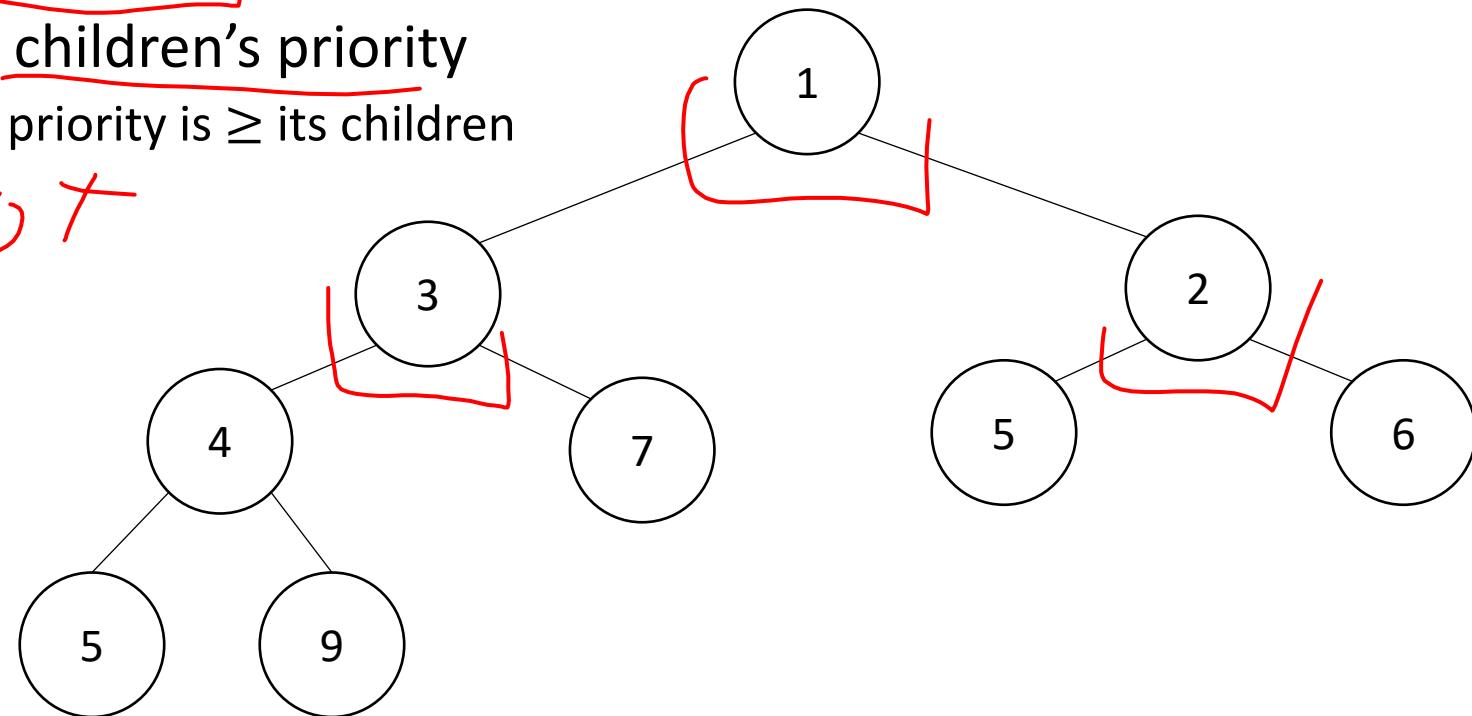


Achieving $\log n$ Running Time

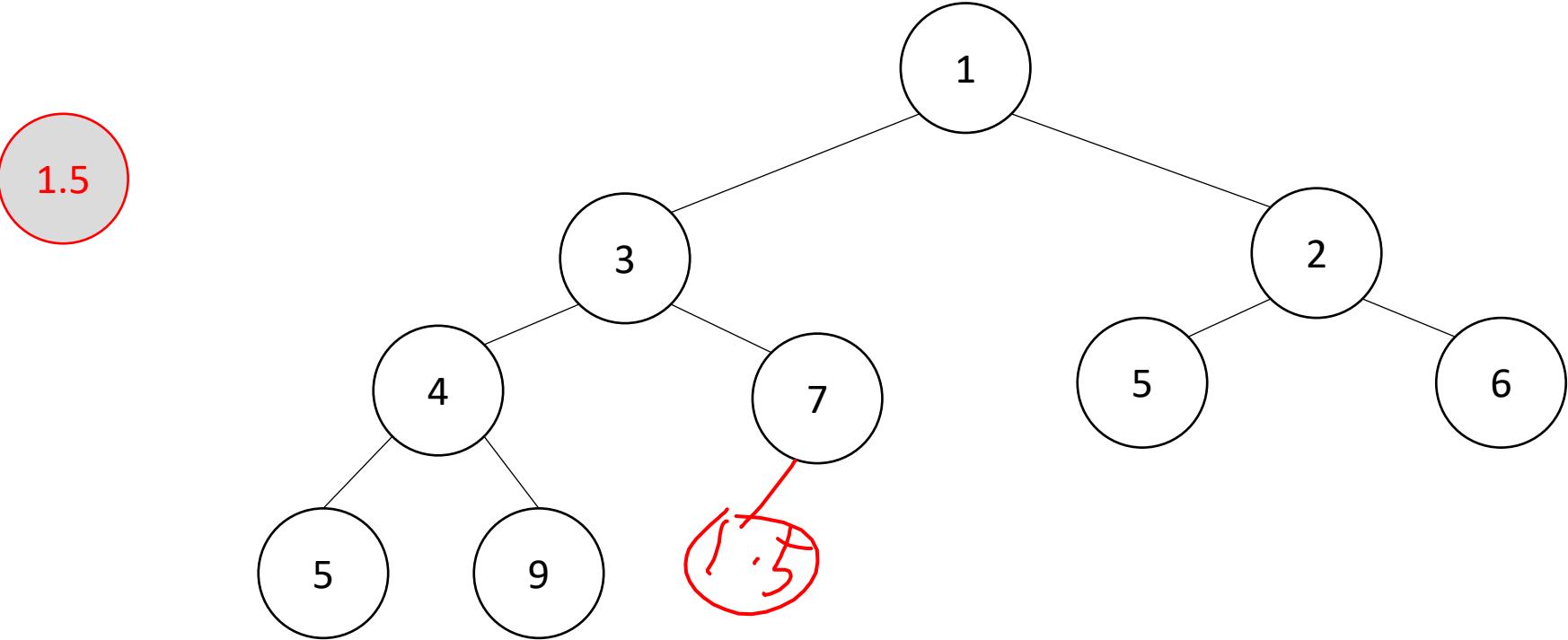
- What is the maximum number of total nodes in a binary tree of height h ?
 - $2^{h+1} - 1$
 - $\Theta(2^h)$
- If I have n nodes in a binary tree, what is its minimum height?
 - Find the smallest h such that: $n \leq 2^{h+1} - 1$
 - Solve for h : $\lceil \log(n + 1) - 1 \rceil = h$
 - Height is $\Theta(\log n)$
- Heap Idea:
 - If n values are inserted into a complete tree, the height will be roughly $\log n$
 - Ensure each insert and extract requires just one “trip” from root to leaf

(Min) Heap Data Structure

- Keep items in a complete binary tree
- Maintain the “(Min) Heap Property” of the tree
 - Every node's priority is \leq its children's priority
 - Max Heap Property: every node's priority is \geq its children
- Where is the min? *Root*
- How do I insert?
- How do I extract?
- How to do it in Java?

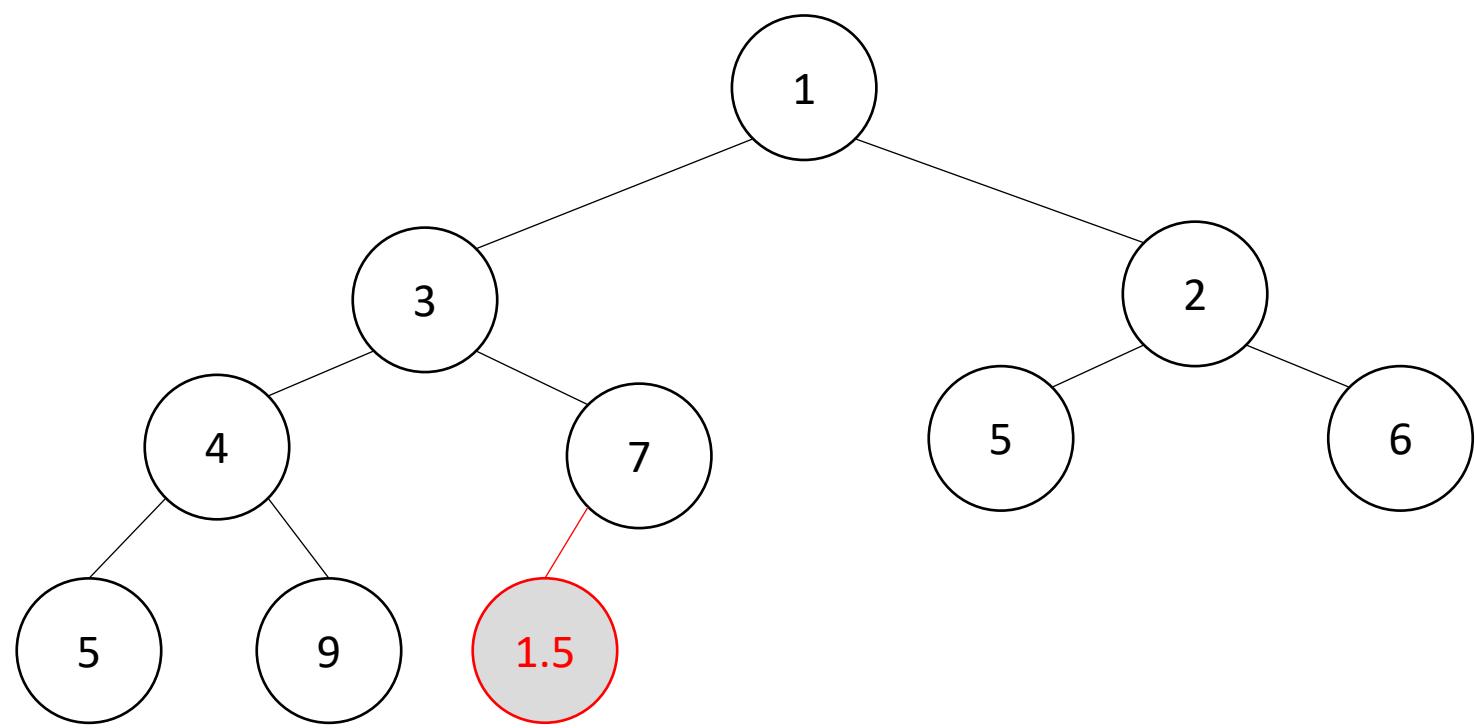


Heap Insert



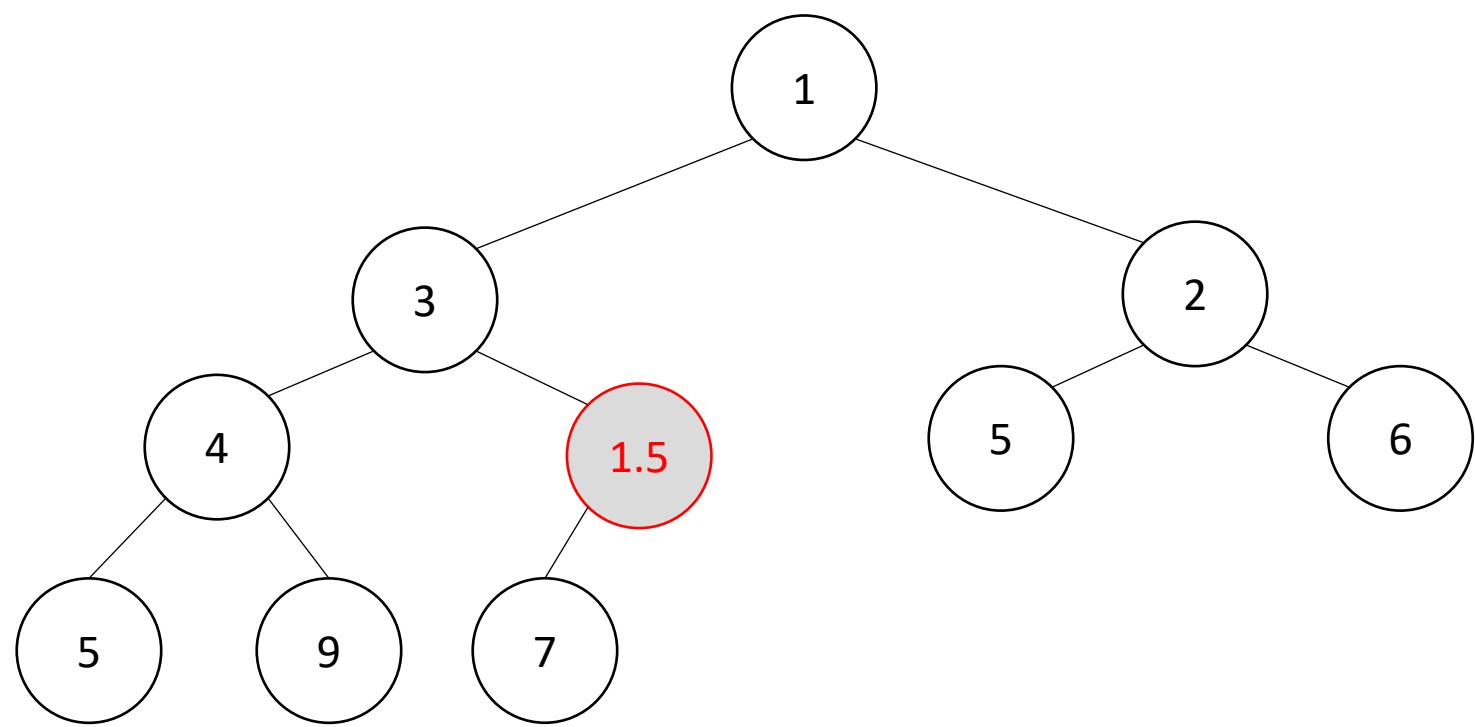
```
insert(item, priority){  
    put item in the “next open” spot (keep tree complete)  
    while (priority < parent’s priority){  
        swap item with parent  
    }  
}
```

Heap Insert



```
insert(item, priority){  
    put item in the “next open” spot (keep tree complete)  
    while (priority < parent’s priority){  
        swap item with parent  
    }  
}
```

Heap Insert



```
insert(item, priority){
```

 put item in the “next open” spot (keep tree complete)

```
    while (priority < parent's priority){
```

 swap item with parent

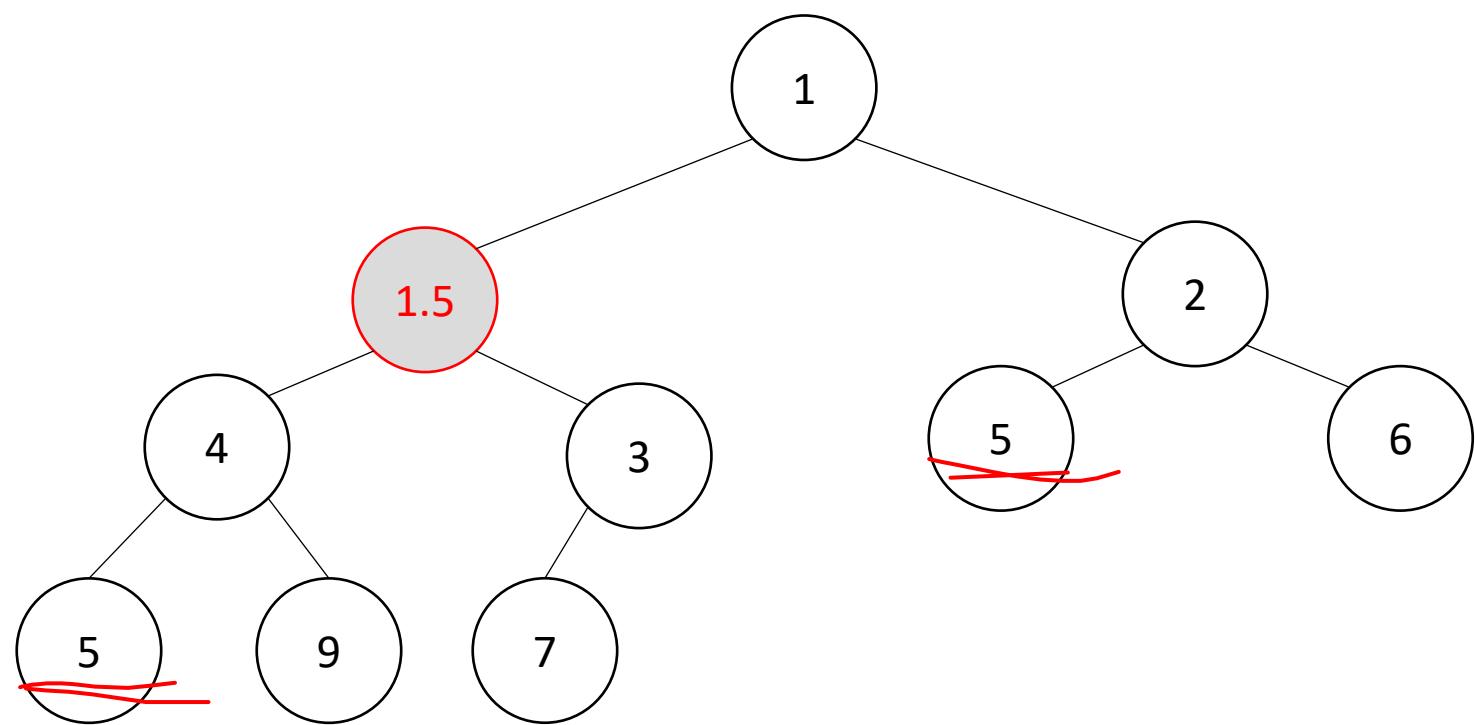
```
}
```

```
}
```

 }

 Percolate Up

Heap Insert



```
insert(item, priority){
```

 put item in the “next open” spot (keep tree complete)

```
    while (priority < parent's priority){
```

 swap item with parent

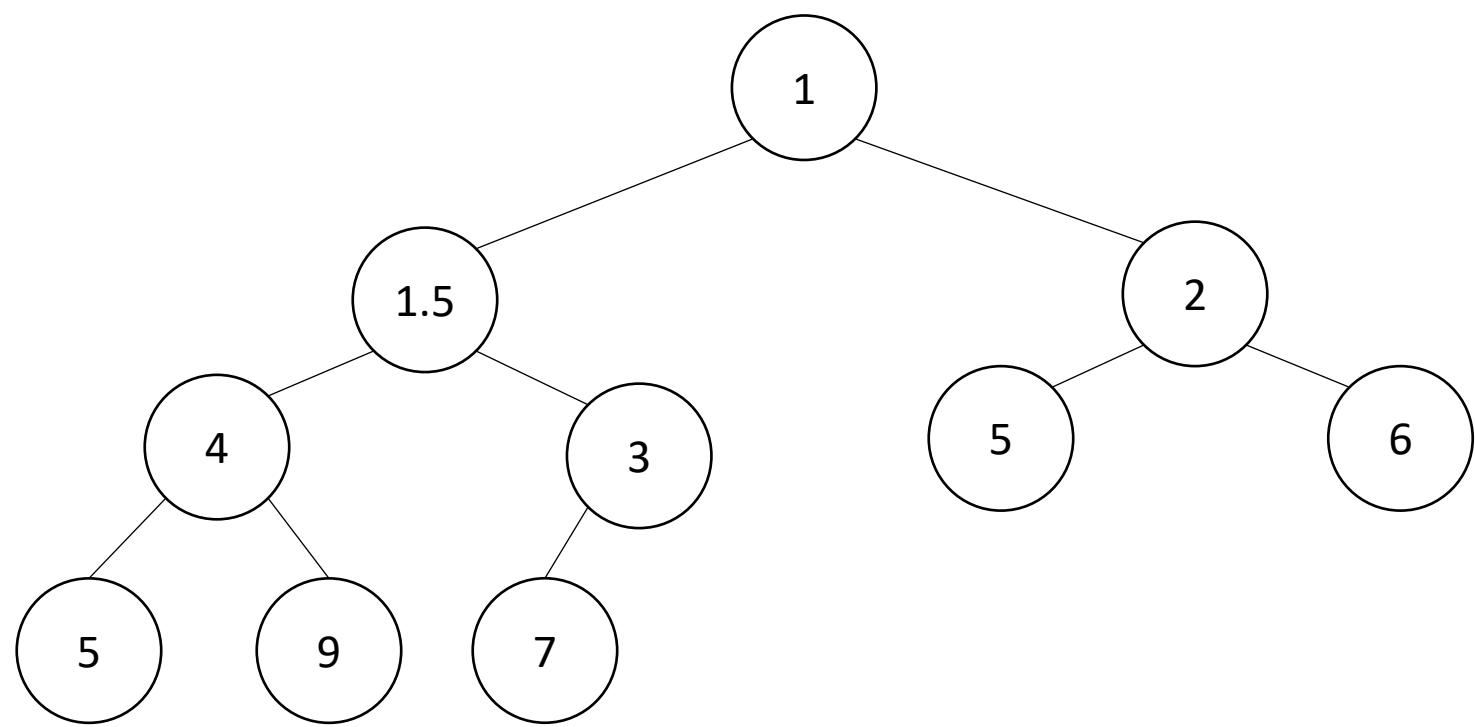
```
}
```

```
}
```

 }

 Percolate Up

Heap Insert



```
insert(item, priority){  
    put item in the “next open” spot (keep tree complete)  
    while (priority < parent’s priority){  
        swap item with parent  
    }  
}
```

Heap extract

extract()

min = root

curr = bottom-right item

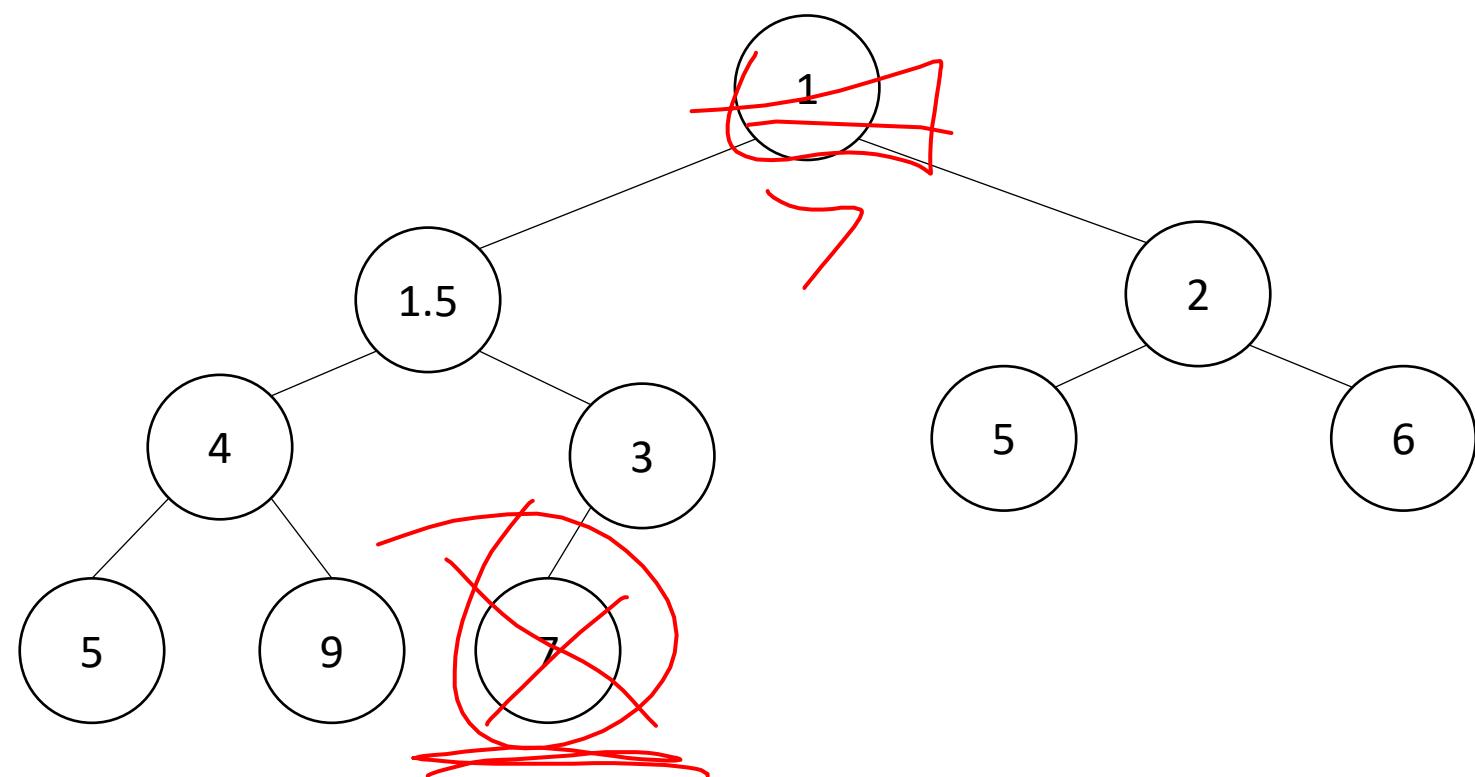
move curr to the root

while(curr > curr.left || curr > curr.right){

 swap curr with its smallest child

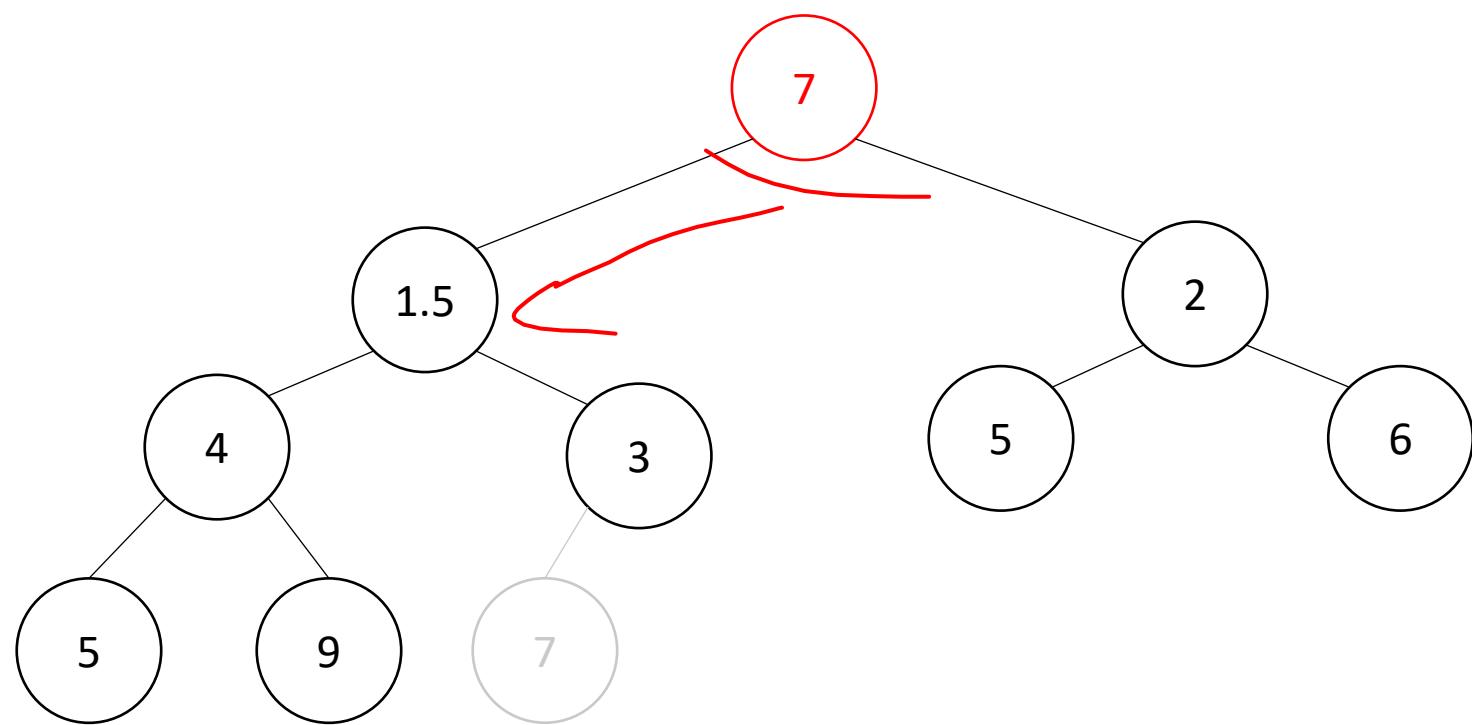
}

return min



Heap extract

```
extract(){  
    min = root  
    curr = bottom-right item  
    move curr to the root  
    while(curr > curr.left || curr > curr.right){  
        swap curr with its smallest child  
    }  
    return min  
}
```



Heap extract

```
extract(){
```

```
    min = root
```

```
    curr = bottom-right item
```

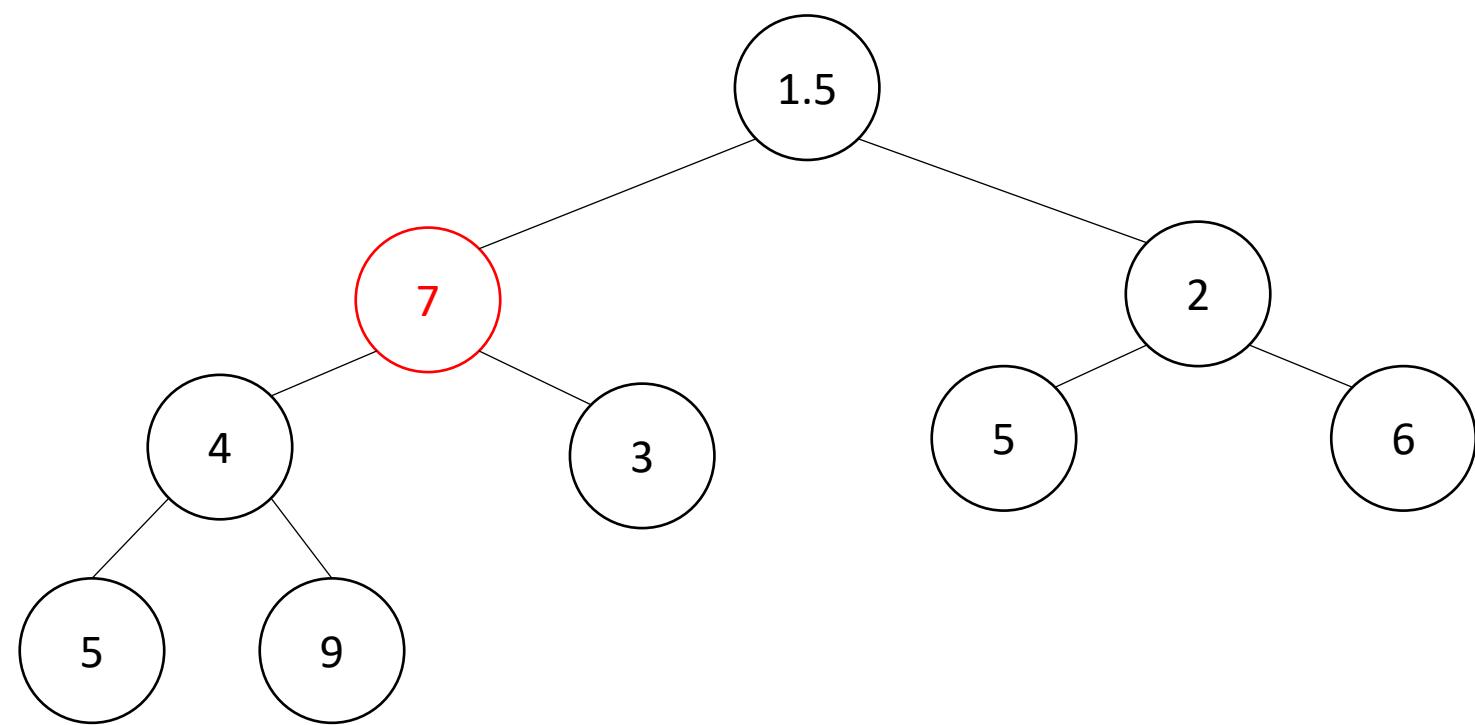
```
    move curr to the root
```

```
    while(curr > curr.left || curr > curr.right){
```

```
        swap curr with its smallest child
```

```
}
```

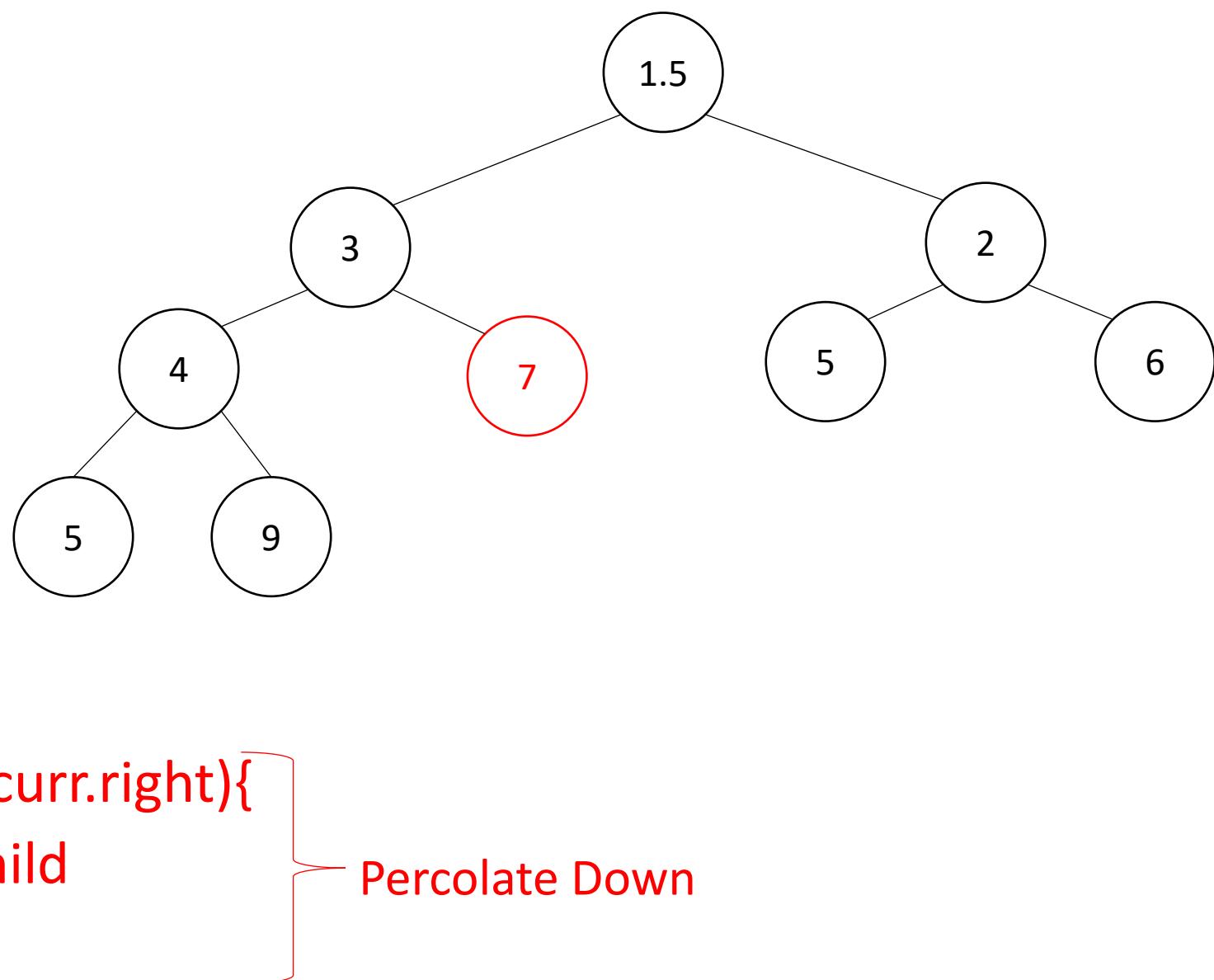
```
    return min
```



Percolate Down

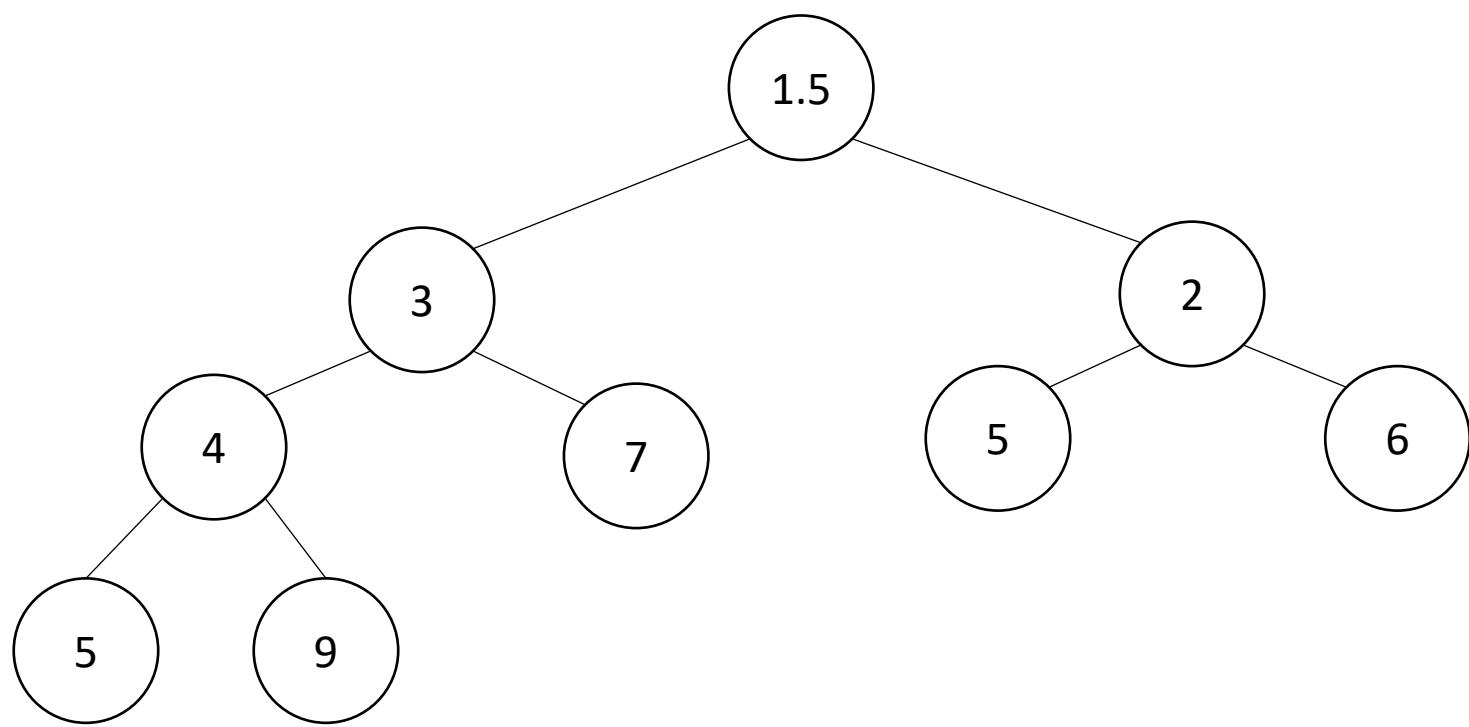
Heap extract

```
extract(){  
    min = root  
    curr = bottom-right item  
    move curr to the root  
    while(curr > curr.left || curr > curr.right){  
        swap curr with its smallest child  
    }  
    return min  
}
```



Heap extract

```
extract(){  
    min = root  
    curr = bottom-right item  
    move curr to the root  
    while(curr > curr.left || curr > curr.right){  
        swap curr with its smallest child  
    }  
    return min  
}
```



Percolate Up and Down (for a Min Heap)

- Goal: restore the “Heap Property”
- Percolate Up:
 - Take a node that may be smaller than a parent, repeatedly swap with a parent until it is larger than its parent
- Percolate Down:
 - Take a node that may be larger than one of its children, repeatedly swap with smallest child until both children are larger
- Worst case running time of each:
 - $\Theta(\log n)$

Representing a Heap

- Every complete binary tree with the same number of nodes uses the same positions and edges
- Use an array to represent the heap

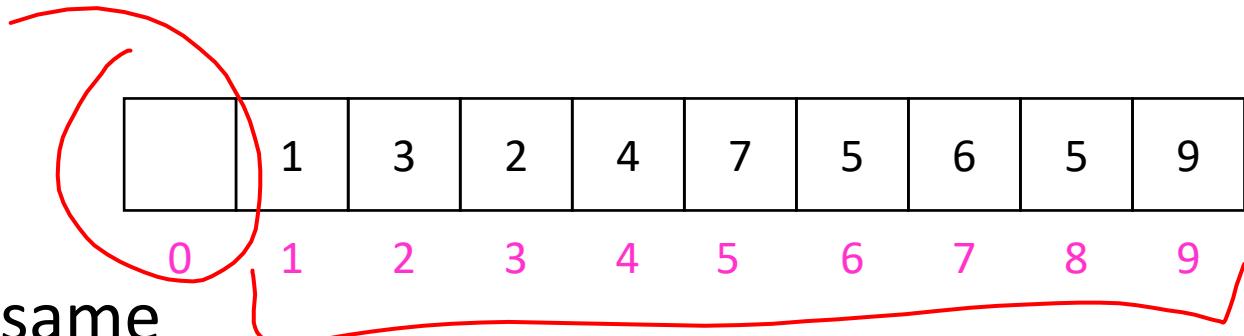
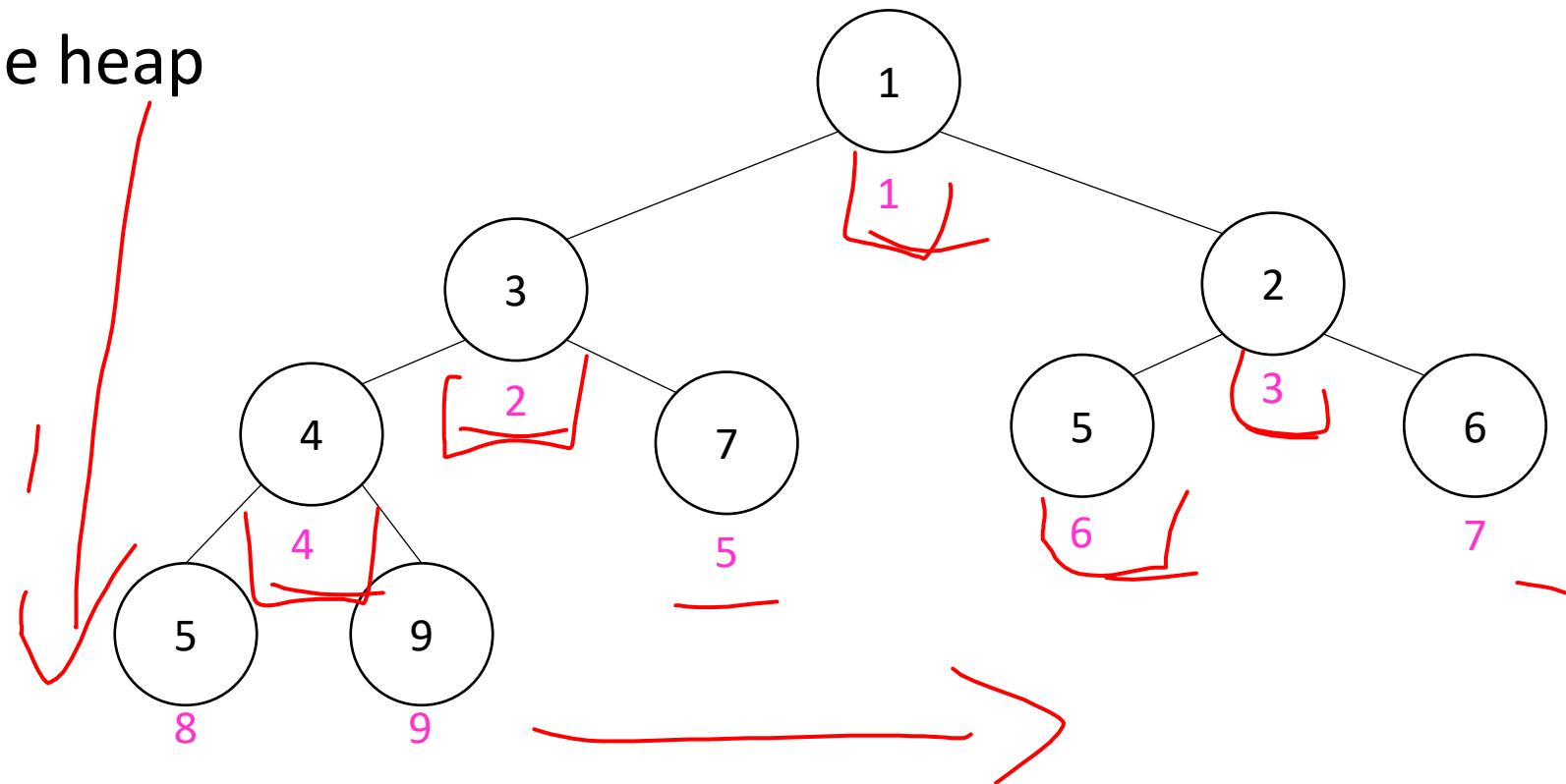
- Index of root:

- Parent of node i :

- Left child of node i :

- Right child of node i :

- Location of the leaves:

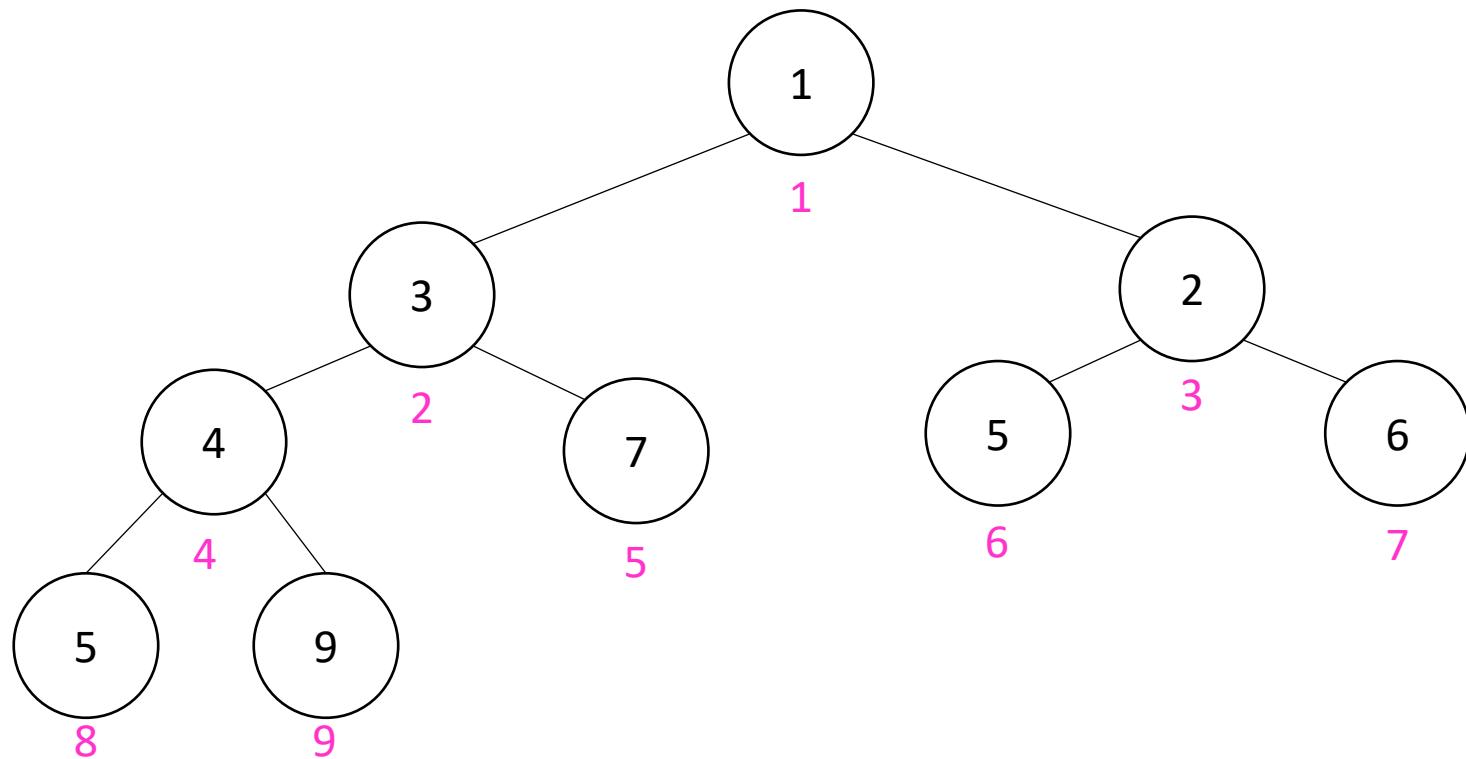


Insert Pseudocode

For simplicity, assume is the same as priority

```
insert(item){  
    if(size == arr.length - 1){resize();}  
    size++;  
    arr[size] = item;  
    percolateUp(size)  
}
```

	1	3	2	4	7	5	6	5	9	
0	1	2	3	4	5	6	7	8	9	10



Percolate Up

```
percolateUp(int i){  
    int parent = i/2; \\ index of parent  
    Item val = arr[i]; \\ value at current location  
    while(i > 1 && arr[i] < arr[parent]){ \\ until location is root or heap property holds  
        arr[i] = arr[parent]; \\ move parent value to this location  
        arr[parent] = val; \\ put current value into parent's location  
        i = parent; \\ make current location the parent  
        parent = i/2; \\ update new parent  
    }  
}
```

extract Pseudocode

```
extract(){
    theMin = arr[1];
    arr[1] = arr[size];
    size--;
    percolateDown(1);
    return theMin;
}
```

Percolate Down

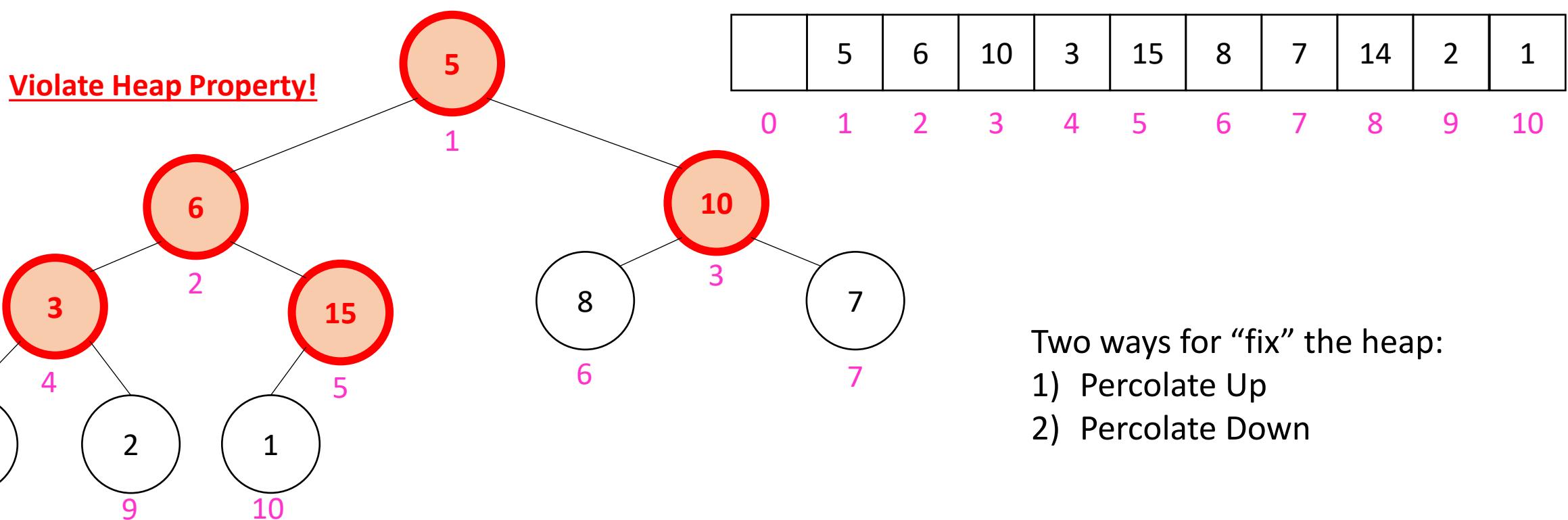
```
percolateDown(int i){  
    int left = i*2; \\\ index of left child  
    int right = i*2+1; \\\ index of right child  
    Item val = arr[i]; \\\ value at location  
    while(left <= size){ \\\ until location is leaf  
        int toSwap = right;  
        if(right > size || arr[left] < arr[right]){ \\\ if there is no right child or if left child is smaller  
            toSwap = left; \\\ swap with left  
        } \\\ now toSwap has the smaller of left/right, or left if right does not exist  
        if (arr[toSwap] < val){ \\\ if the smaller child is less than the current value  
            arr[i] = arr[toSwap];  
            arr[toSwap] = val; \\\ swap parent with smaller child  
            i = toSwap; \\\ update current node to be smaller child  
            left = i*2;  
            right = i*2+1;  
        }  
        else{ return;} \\\ if we don't swap, then heap property holds  
    }  
}
```

Other Operations

- Increase Key
 - Given the index of an item in the PQ, make its priority value larger
 - Min Heap: Then percolate down
 - Max Heap: Then percolate up
- Decrease Key
 - Given the index of an item in the PQ, make its priority value smaller
 - Min Heap: Then percolate up
 - Max Heap: Then percolate down
- Remove
 - Given the item at the given index from the PQ

Building a Heap From “Scratch”

- Suppose we had n items and wanted to “heapify” them



Floyd's buildHeap method

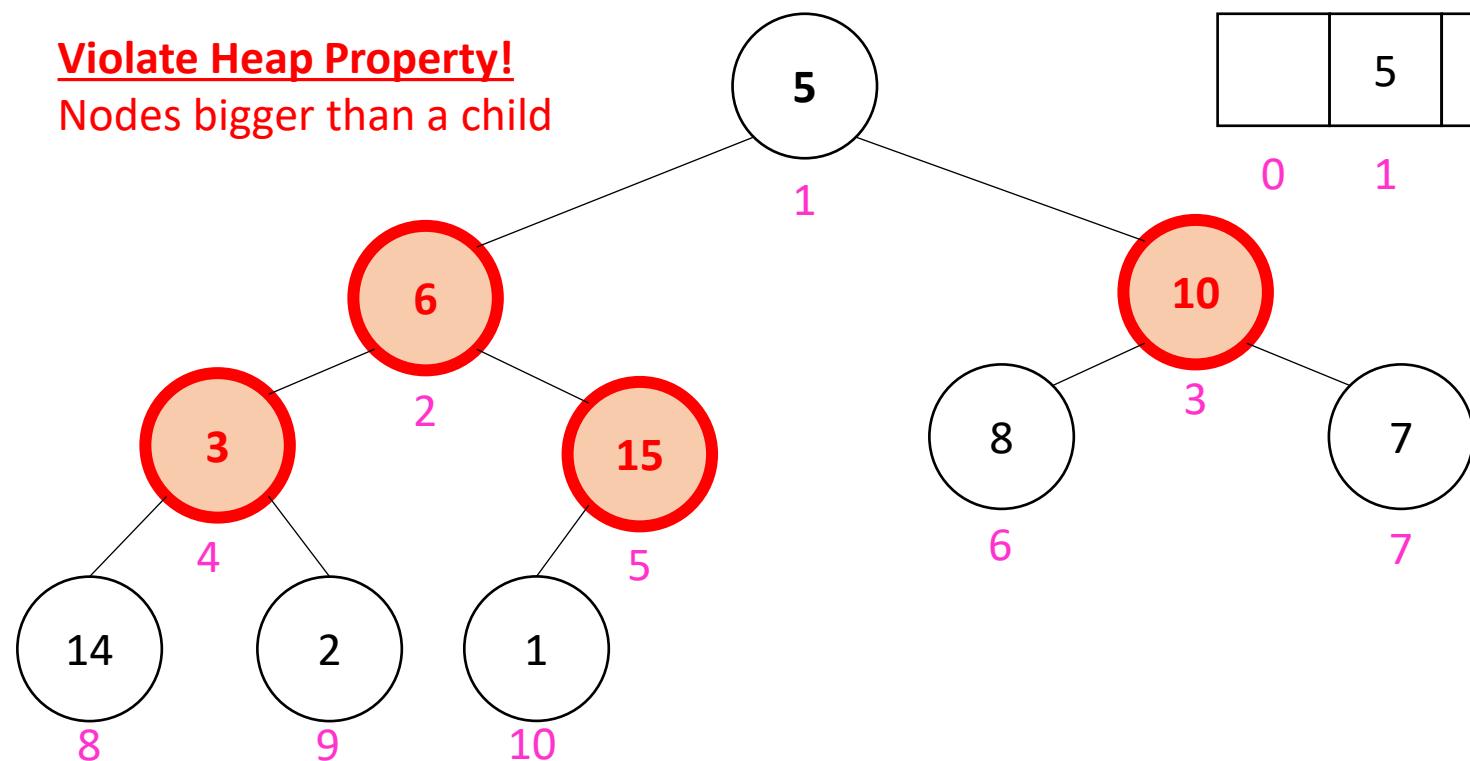
- Working towards the root, one row at a time, percolate down

```
buildHeap(){  
    for(int i = size; i>0; i--){  
        percolateDown(i);  
    }  
}
```

Floyd's buildHeap method

- Suppose we had n items and wanted to “heapify” them

Violate Heap Property!
Nodes bigger than a child



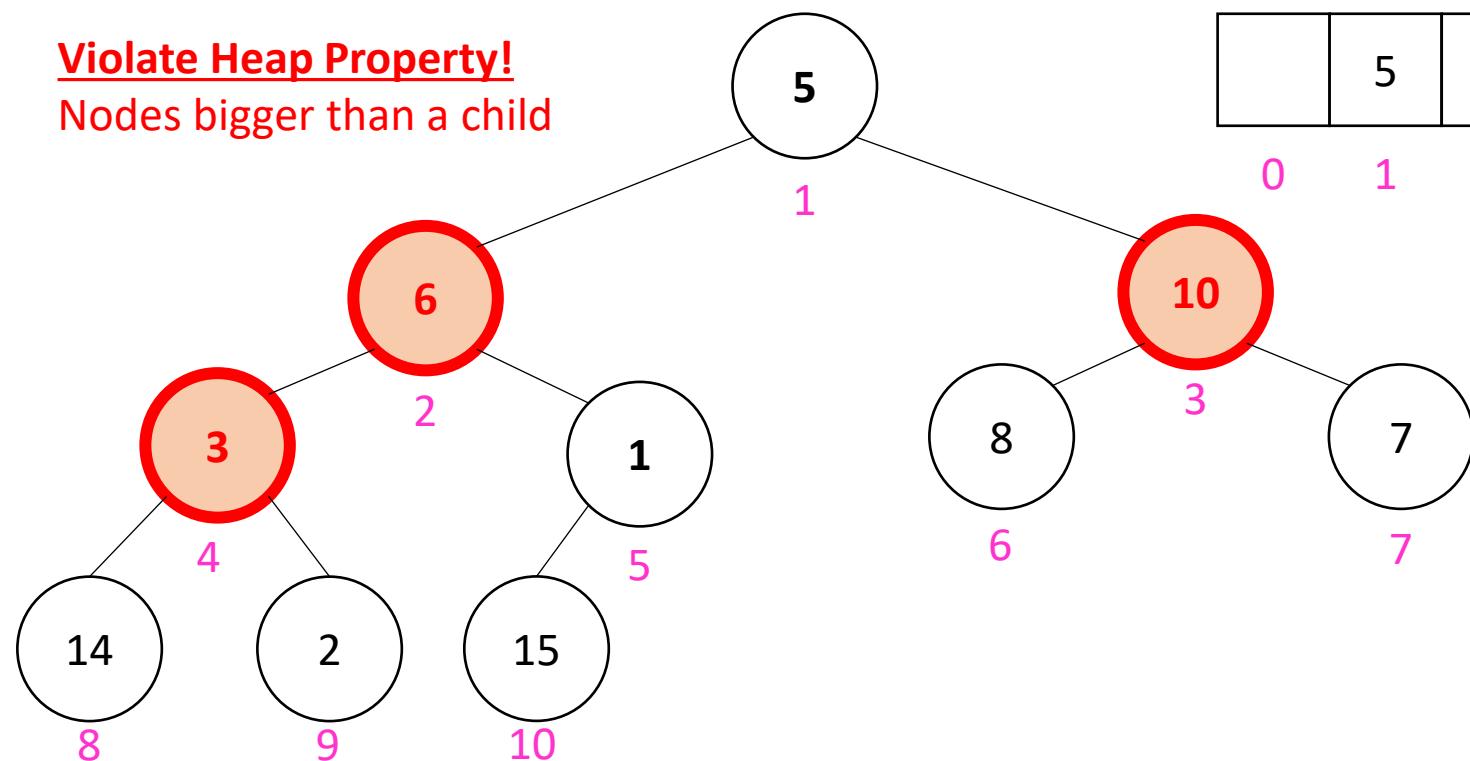
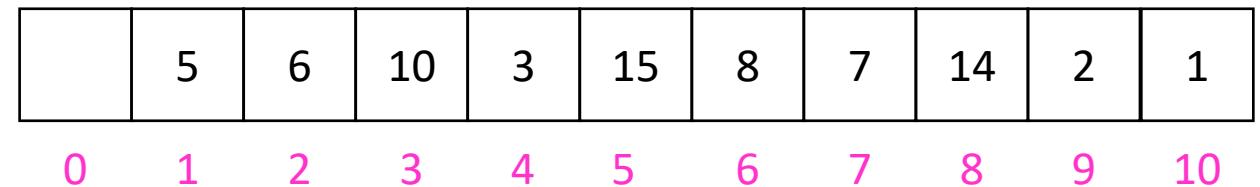
	5	6	10	3	15	8	7	14	2	1
0	1	2	3	4	5	6	7	8	9	10

```
buildHeap(){  
    for(int i = size; i>0; i--){  
        percolateDown(i);  
    }  
}
```

Floyd's buildHeap method

- Suppose we had n items and wanted to “heapify” them

Violate Heap Property!
Nodes bigger than a child

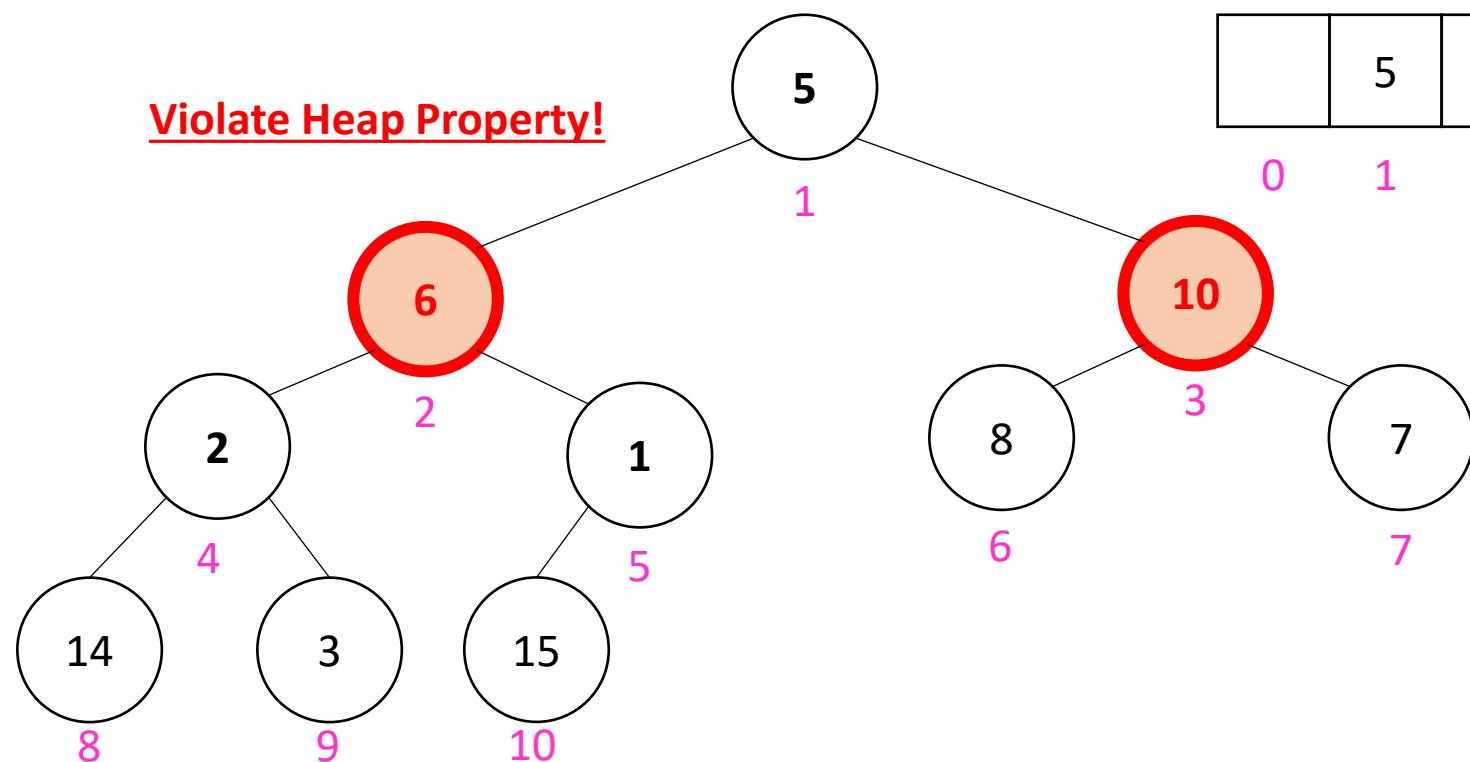
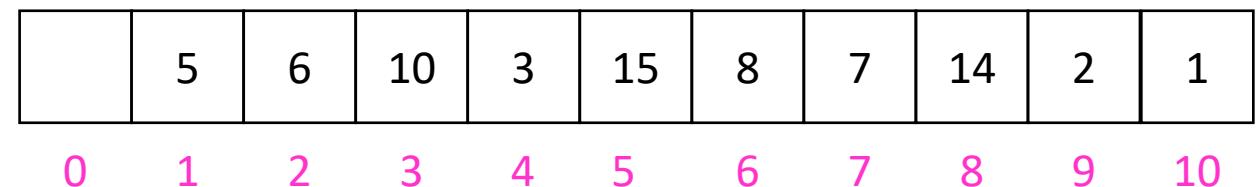


```
buildHeap(){  
    for(int i = size; i>0; i--){  
        percolateDown(i);  
    }  
}
```

Floyd's buildHeap method

- Suppose we had n items and wanted to “heapify” them

Violate Heap Property!

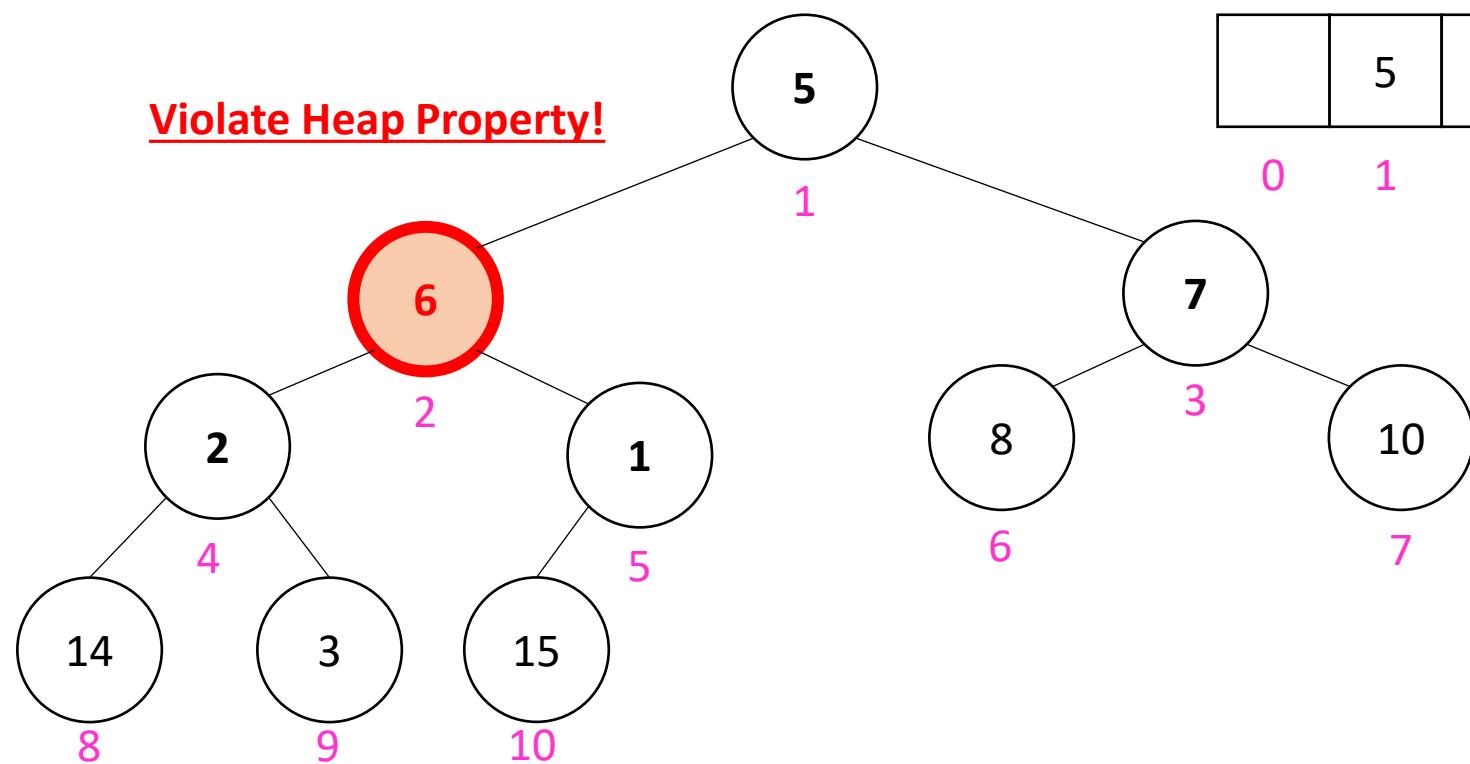


```
buildHeap(){  
    for(int i = size; i>0; i--){  
        percolateDown(i);  
    }  
}
```

Floyd's buildHeap method

- Suppose we had n items and wanted to “heapify” them

Violate Heap Property!

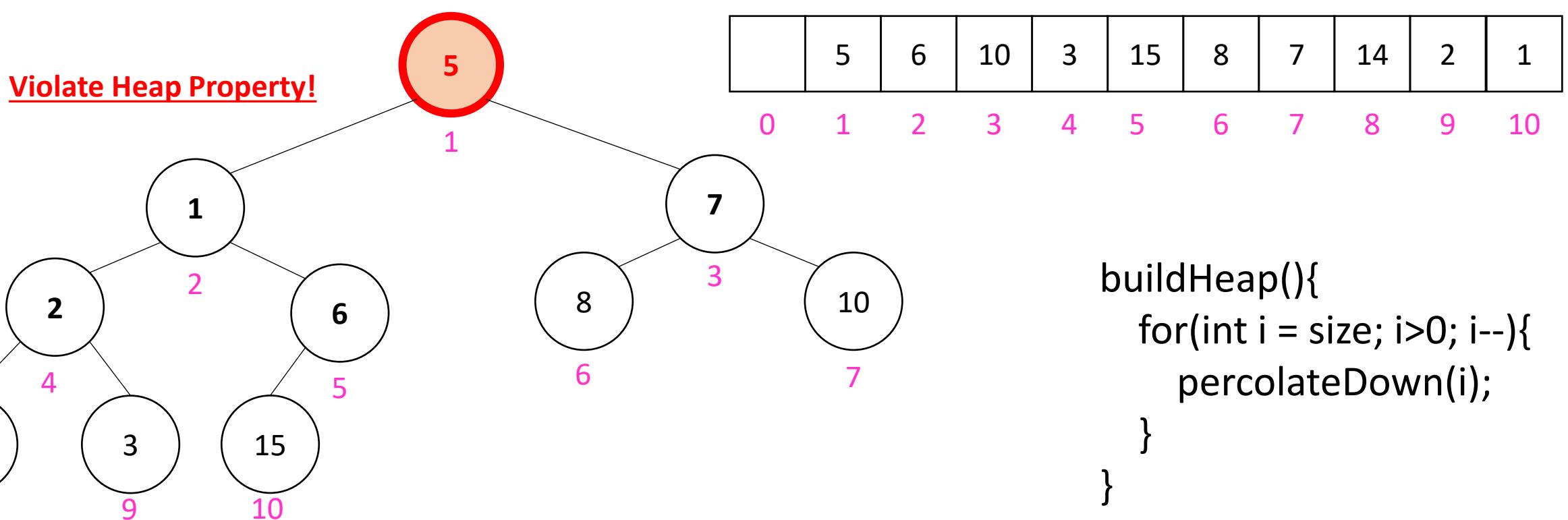


	5	6	10	3	15	8	7	14	2	1
0	1	2	3	4	5	6	7	8	9	10

```
buildHeap(){  
    for(int i = size; i>0; i--){  
        percolateDown(i);  
    }  
}
```

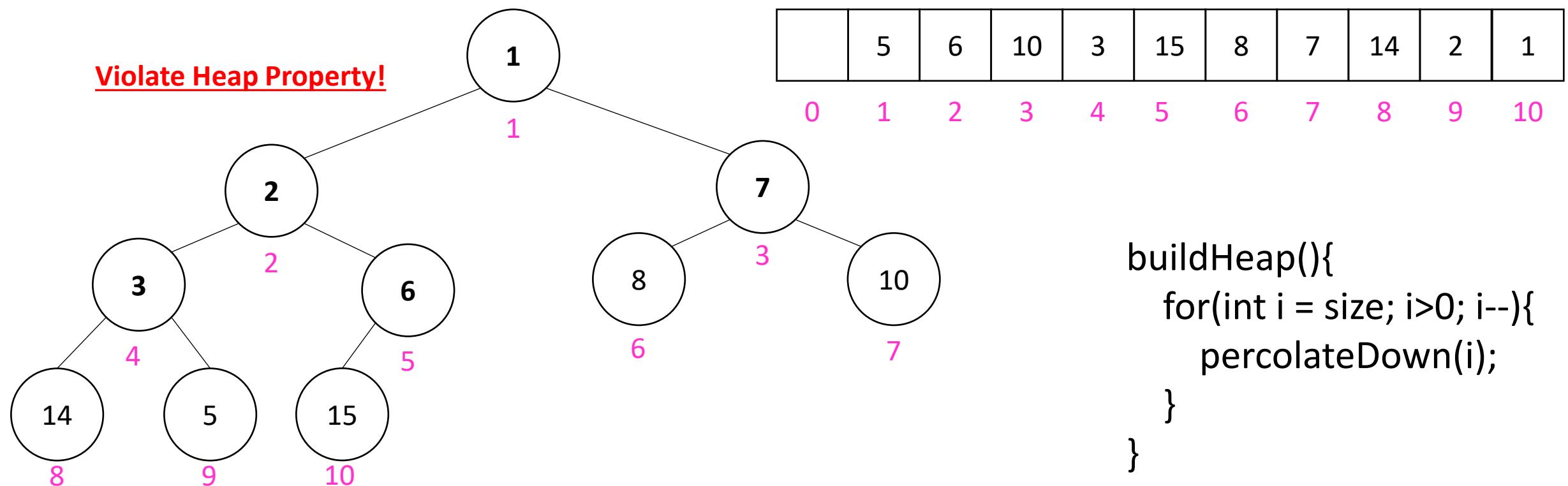
Floyd's buildHeap method

- Suppose we had n items and wanted to “heapify” them



Floyd's buildHeap method

- Suppose we had n items and wanted to “heapify” them



How long did this take?

- Worst case running time of buildHeap:
- No node can percolate down more than the height of its subtree
 - When i is a leaf:
 - When i is second-from-last level:
 - When i is third-from-last level:
- Overall Running time:

```
buildHeap(){  
    for(int i = size; i>0; i--){  
        percolateDown(i);  
    }  
}
```