CSE 332 Winter 2026
Lecture 5: Priority Queues

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

ADT: Priority Queue

* What is it?
* A collection of items and their “priorities”

 Allows quick access/removal to the “top priority” thing
e Usually a smaller priority value means the item is “more important”

 What Operations do we need?
* insert(item, priority)
* Add a new item to the PQ with indicated priority
e extract

* Remove and return the “top priority” item from the queue
e Usually the item with the smallest priority value

* [SEmpty
* Indicate whether or not there are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Applications?

* ER

e Server packets
* |f a server overloaded

* Todo list

 Airport boarding

e Support tickets

* Online gaming server
* Course registration

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array '
Unsorted Linked List /
Sorted Array h
Sorted Linked List m
Binary Search Tree (/\
f 2
1 s

(
For simplicity, ASSQ{E%FIOW the maximum size’of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers...)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array 0(1) O(n)
Unsorted Linked List 0(1) 0(n)
Sorted Array O(n) O(1)
Sorted Linked List O(n) 0(1)
Binary Search Tree O(n) O(n)

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers...)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array 0(1) O(n)
Unsorted Linked List 0(1) 0(n)
Sorted Array O(n) O(1)
Sorted Linked List O(n) 0(1)
Binary Search Tree O(n) O(n)
Binary Heap O(logn) O(logn)

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers...)

Trees for Heaps

* Binary Trees:
* The branching factor is 2
* Every node has < 2 children

 Complete Tree:
°\A/II “layers” aref/ulj, except the bottom

* Bottom layer filled left-to-right

Priority Queue Data Structure — Heap ldea

e |dea: Maintain a limited amount of order

. G)[(l/og\w worst case for extract and insert 1

%*)

Achieving logn Running Time } =) QA

maximum number of total nodes in a binary tree of height h?

o |fI have n nodes in a binary tree, what is its minimum height?
+ Find the smallest h_such thatyn < 21
* Solve for h: [log(n + 1) — 1]L/< z\//

* Height |sL®(log n)
—\

* Heap ldea:

* If n values are inserted into a complete tree, the height will be roughly logn
* Ensure each insert and extract requires just one “trip” from root to leaf

(Min) Heap Data Structure

* Keep items in a complete binary tree

* Maintain the “(Min) Heap Property” of the tree
e Every node’s priority i its children’s priority
* Max Heap Property: every node’s priority is = its children

* Where is the min? K OO
* How do | insert?

e How do | extract?
e How to do it in Java?

insert(item, priority){
put item in the “next open” spot (keep tree complete)
while (priority < parent’s priority){
swap item with parent

Heap Insert
O (2
(S ONRO

o
oo

put item in the “next open” spot (keep tree complete)

insert(item, priority){

while (priority < parent’s priority){
swap item with parent

Heap Insert

insert(item, priority){
put item in the “next open” spot (keep tree complete)

while (priority < parent’s priority){

swap item with parent — Percolate Up

Heap Insert
£ (2
ONRORRONNO

insert(item, priority){
put item in the “next open” spot (keep tree complete)

while (priority < parent’s priority){

swap item with parent — Percolate Up

Heap Insert

insert(item, priority){
Lput item in the “next open sPo/t(keep tree complete)

while (prioriEy <P§Ient’s priority){

swap item with parent
| Suep em with parent

Heap extract e

extract(){

ot oJo)

curr = bottom-right item

move curr to the root
while(curr > curr.left || curr > curr.right){
swap curr with its smallest child

}

return min

Heap extract
© (2]
O O © ©
extract(){

min = root 6 0

curr = bottom-right item

move curr to the root

while(curr > curr.left || curr > curr.right){
swap curr with its smallest child

}

return min

Heap extract
9 O
O OO O
extract(){

min = root G a

curr = bottom-right item
move curr to the root

while(curr > curr.left || curr > curr.right){ |

swap curr with its smallest child — Percolate Down
} |
return min

Heap extract

extract(){
min = root
curr = bottom-right item
move curr to the root

while(curr > curr.left || curr > curr.right){ |

swap curr with its smallest child — Percolate Down
} /
return min

Heap extract
O (2]
O O © ©
extract(){

min = root 6 0

curr = bottom-right item

move curr to the root

while(curr > curr.left || curr > curr.right){
swap curr with its smallest child

}

return min

fe/rcolate Up and Down (for a Min Heap)

)

* Goal: restore the “Heap Property”

* Percolate Up:
* Take a node that may be smaller than a parent, repeatedly swap with a parent
until it is larger than its parent
* Percolate Down:
* Take a node that may be larger than one of its children, repeatedly swap with
smallest child until both children are larger
* Worst case running time of each:
* O(logn)

Representing a Heap

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root:

e Parent of node i: | Q

e Left child of node i: ,,2 e |

* Right child of node i: J (7 | Q

* Location of the Ieaves:L//; e)"‘
g g ‘

9

Insert Pseudocode 13| 2|a|7 5|65

7 3 9 10

For simplicity, assume is the same as priority 0 1 2 3 4 5 6

insert(item){
if(size == arr.length — 1){resize();}
Size++;
arr[size] = item;
percolateUp(size)

Percolate Up

percolateUp(int i){

int parent =i/2; \\ index of parent

ltem val = arr[i]; \\ value at current location

while(i > 1 && arr[i] < arr[parent]){ \\ until location is root or heap property holds
arr[i] = arr[parent]; \\ move parent value to this location
arr[parent] = val; \\ put current value into parent’s location
i = parent; \\ make current location the parent
parent =i/2; \\ update new parent

extract Pseudocode

extract(){
theMin = arr[1];
arr[1] = arr[size];
Size--;
percolateDown(1);
return theMin;

Percolate Down

percolateDown(int i){
int left =i*2; \\ index of left child
int right =i*2+1; \\ index of right child
ltem val = arr[i]; \\ value at location
while(left <=size){ \\ until location is leaf
int toSwap = right;
if(right > size | | arr[left] < arr[right]){ \\ if there is no right child or if left child is smaller
toSwap = left; \\ swap with left
}\\ now toSwap has the smaller of left/right, or left if right does not exist
if (arr[toSwap] < val){ \\ if the smaller child is less than the current value
arr[i] = arr[toSwap];
arr[toSwap] = val; \\ swap parent with smaller child
i = toSwap; \\ update current node to be smaller child
left = i*2;
right =i*2+1;
}

else{ return;} \\ if we don’t swap, then heap property holds

Other Operations

* Increase Key

* Given the index of an item in the PQ, make its priority value larger
* Min Heap: Then percolate down
* Max Heap: Then percolate up

* Decrease Key

* Given the index of an item in the PQ, make its priority value smaller

* Min Heap: Then percolate up
* Max Heap: Then percolate down

* Remove
* Given the item at the given index from the PQ

Building a Heap From “Scratch”

e Suppose we had n items and wanted to “heapify” them

10 | 3 | 15| 8 7 | 14

Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down

Floyd’s buildHeap method

* Working towards the root, one row at a time, percolate down

buildHeap(){
for(int i = size; i>0; i--){
percolateDown(i);
}
}

Floyd’s buildHeap method

e Suppose we had n items and wanted to “heapify” them

Violate Heap Property! 5
Nodes bigger than a child

10

15

buildHeap(){
for(int i = size; i>0; i--){

}

)

percolateDown(i);

Floyd’s buildHeap method

e Suppose we had n items and wanted to “heapify” them

Violate Heap Property! 5
Nodes bigger than a child

10

15

buildHeap(){
for(int i = size; i>0; i--){

}

)

percolateDown(i);

Floyd’s buildHeap method

e Suppose we had n items and wanted to “heapify” them

Violate Heap Property!

10

15

buildHeap(){
for(int i = size; i>0; i--){

}

)

percolateDown(i);

Floyd’s buildHeap method

e Suppose we had n items and wanted to “heapify” them

Violate Heap Property!

10

15

buildHeap(){
for(int i = size; i>0; i--){

}

)

percolateDown(i);

Floyd’s buildHeap method

e Suppose we had n items and wanted to “heapify” them

Violate Heap Property!

10

15

buildHeap(){
for(int i = size; i>0; i--){

}

)

percolateDown(i);

Floyd’s buildHeap method

e Suppose we had n items and wanted to “heapify” them

Violate Heap Property!

10

15

buildHeap(){
for(int i = size; i>0; i--){

}

)

percolateDown(i);

buildHeap(){
How long did this take? for(int i = size; i>0; i--){

percolateDown(i);

}
* Worst case running time of buildHeap: J

* No node can percolate down more than the height of its subtree
* When i is a leaf:
* When i is second-from-last level:
* When i is third-from-last level:

* Overall Running time:

	Slide 1: CSE 332 Winter 2026 Lecture 5: Priority Queues
	Slide 2: ADT: Priority Queue
	Slide 3: Applications?
	Slide 4: Thinking through implementations
	Slide 5: Thinking through implementations
	Slide 6: Thinking through implementations
	Slide 7: Trees for Heaps
	Slide 8: Priority Queue Data Structure – Heap Idea
	Slide 9: Achieving log n Running Time
	Slide 10: (Min) Heap Data Structure
	Slide 11: Heap Insert
	Slide 12: Heap Insert
	Slide 13: Heap Insert
	Slide 14: Heap Insert
	Slide 15: Heap Insert
	Slide 16: Heap extract
	Slide 17: Heap extract
	Slide 18: Heap extract
	Slide 19: Heap extract
	Slide 20: Heap extract
	Slide 21: Percolate Up and Down (for a Min Heap)
	Slide 22: Representing a Heap
	Slide 23: Insert Pseudocode
	Slide 24: Percolate Up
	Slide 25: extract Pseudocode
	Slide 26: Percolate Down
	Slide 27: Other Operations
	Slide 28: Building a Heap From “Scratch”
	Slide 29: Floyd’s buildHeap method
	Slide 30: Floyd’s buildHeap method
	Slide 31: Floyd’s buildHeap method
	Slide 32: Floyd’s buildHeap method
	Slide 33: Floyd’s buildHeap method
	Slide 34: Floyd’s buildHeap method
	Slide 35: Floyd’s buildHeap method
	Slide 36: How long did this take?

