
CSE 332 Winter 2026
Lecture 5: Priority Queues

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• Usually a smaller priority value means the item is “more important”

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• extract

• Remove and return the “top priority” item from the queue
• Usually the item with the smallest priority value

• IsEmpty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Applications?

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array

Unsorted Linked List

Sorted Array

Sorted Linked List

Binary Search Tree

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers…)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(1)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 𝑛

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers…)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(1)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 𝑛

Binary Heap Θ log 𝑛 Θ log 𝑛

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers…)

Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right

1

3 2

4 7 5 6

5 9

Priority Queue Data Structure – Heap Idea

• Idea: Maintain a limited amount of order

• Θ(log 𝑛) worst case for extract and insert

1

3 2

4 7 5 6

5 9

Achieving log 𝑛 Running Time

• What is the maximum number of total nodes in a binary tree of height ℎ?
• 2ℎ+1 − 1

• Θ 2ℎ

• If I have 𝑛 nodes in a binary tree, what is its minimum height?
• Find the smallest ℎ such that: 𝑛 ≤ 2ℎ+1 − 1
• Solve for ℎ: ⌈log 𝑛 + 1 − 1⌉ = ℎ
• Height is Θ log 𝑛

• Heap Idea:
• If 𝑛 values are inserted into a complete tree, the height will be roughly log 𝑛
• Ensure each insert and extract requires just one “trip” from root to leaf

(Min) Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “(Min) Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority
• Max Heap Property: every node’s priority is ≥ its children

• Where is the min?

• How do I insert?

• How do I extract?

• How to do it in Java?

1

3 2

4 7 5 6

5 9

Heap Insert

insert(item, priority){

 put item in the “next open” spot (keep tree complete)

 while (priority < parent’s priority){

 swap item with parent

 }

}

1

3 2

4 7 5 6

5 9

1.5

Heap Insert

insert(item, priority){

 put item in the “next open” spot (keep tree complete)

 while (priority < parent’s priority){

 swap item with parent

 }

}

1

3 2

4 7 5 6

5 9 1.5

Heap Insert

insert(item, priority){

 put item in the “next open” spot (keep tree complete)

 while (priority < parent’s priority){

 swap item with parent

 }

}

1

3 2

4 1.5 5 6

5 9 7

Percolate Up

Heap Insert

insert(item, priority){

 put item in the “next open” spot (keep tree complete)

 while (priority < parent’s priority){

 swap item with parent

 }

}

1

1.5 2

4 3 5 6

5 9 7

Percolate Up

Heap Insert

insert(item, priority){

 put item in the “next open” spot (keep tree complete)

 while (priority < parent’s priority){

 swap item with parent

 }

}

1

1.5 2

4 3 5 6

5 9 7

Heap extract

extract(){

 min = root

 curr = bottom-right item

 move curr to the root

 while(curr > curr.left || curr > curr.right){

 swap curr with its smallest child

 }

 return min

}

1

1.5 2

4 3 5 6

5 9 7

Heap extract

extract(){

 min = root

 curr = bottom-right item

 move curr to the root

 while(curr > curr.left || curr > curr.right){

 swap curr with its smallest child

 }

 return min

}

7

1.5 2

4 3 5 6

5 9 7

Heap extract

extract(){

 min = root

 curr = bottom-right item

 move curr to the root

 while(curr > curr.left || curr > curr.right){

 swap curr with its smallest child

 }

 return min

}

1.5

7 2

4 3 5 6

5 9

Percolate Down

Heap extract
1.5

3 2

4 7 5 6

5 9

extract(){

 min = root

 curr = bottom-right item

 move curr to the root

 while(curr > curr.left || curr > curr.right){

 swap curr with its smallest child

 }

 return min

}

Percolate Down

Heap extract

extract(){

 min = root

 curr = bottom-right item

 move curr to the root

 while(curr > curr.left || curr > curr.right){

 swap curr with its smallest child

 }

 return min

}

1.5

3 2

4 7 5 6

5 9

Percolate Up and Down (for a Min Heap)

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛

Representing a Heap

• Every complete binary tree with the same
number of nodes uses the same positions
and edges

• Use an array to represent the heap

• Index of root:

• Parent of node 𝑖:

• Left child of node 𝑖:

• Right child of node 𝑖:

• Location of the leaves:

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9

Insert Pseudocode

insert(item){

 if(size == arr.length – 1){resize();}

 size++;

 arr[size] = item;

 percolateUp(size)

}

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9 10For simplicity, assume is the same as priority

Percolate Up

percolateUp(int i){

 int parent = i/2; \\ index of parent

 Item val = arr[i]; \\ value at current location

 while(i > 1 && arr[i] < arr[parent]){ \\ until location is root or heap property holds

 arr[i] = arr[parent]; \\ move parent value to this location

 arr[parent] = val; \\ put current value into parent’s location

 i = parent; \\ make current location the parent

 parent = i/2; \\ update new parent

 }

}

extract Pseudocode

extract(){

 theMin = arr[1];

 arr[1] = arr[size];

 size--;

 percolateDown(1);

 return theMin;

}

Percolate Down
percolateDown(int i){

 int left = i*2; \\ index of left child

 int right = i*2+1; \\ index of right child

 Item val = arr[i]; \\ value at location

 while(left <= size){ \\ until location is leaf

 int toSwap = right;

 if(right > size || arr[left] < arr[right]){ \\ if there is no right child or if left child is smaller

 toSwap = left; \\ swap with left

 } \\ now toSwap has the smaller of left/right, or left if right does not exist

 if (arr[toSwap] < val){ \\ if the smaller child is less than the current value

 arr[i] = arr[toSwap];

 arr[toSwap] = val; \\ swap parent with smaller child

 i = toSwap; \\ update current node to be smaller child

 left = i*2;

 right = i*2+1;

 }

 else{ return;} \\ if we don’t swap, then heap property holds

 }

}

Other Operations

• Increase Key
• Given the index of an item in the PQ, make its priority value larger

• Min Heap: Then percolate down

• Max Heap: Then percolate up

• Decrease Key
• Given the index of an item in the PQ, make its priority value smaller

• Min Heap: Then percolate up

• Max Heap: Then percolate down

• Remove
• Given the item at the given index from the PQ

Building a Heap From “Scratch”

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down

Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!
Nodes bigger than a child

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 1 8 7

14 2

1

2 3

4 65 7

8 9

15

10

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Violate Heap Property!
Nodes bigger than a child

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

2 1 8 7

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 7

2 1 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

1 7

2 6 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

1

2 7

3 6 8 10

14 5

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

How long did this take?

• Worst case running time of buildHeap:

• No node can percolate down more than the height of its subtree
• When i is a leaf:

• When i is second-from-last level:

• When i is third-from-last level:

• Overall Running time:

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

	Slide 1: CSE 332 Winter 2026 Lecture 5: Priority Queues
	Slide 2: ADT: Priority Queue
	Slide 3: Applications?
	Slide 4: Thinking through implementations
	Slide 5: Thinking through implementations
	Slide 6: Thinking through implementations
	Slide 7: Trees for Heaps
	Slide 8: Priority Queue Data Structure – Heap Idea
	Slide 9: Achieving log n Running Time
	Slide 10: (Min) Heap Data Structure
	Slide 11: Heap Insert
	Slide 12: Heap Insert
	Slide 13: Heap Insert
	Slide 14: Heap Insert
	Slide 15: Heap Insert
	Slide 16: Heap extract
	Slide 17: Heap extract
	Slide 18: Heap extract
	Slide 19: Heap extract
	Slide 20: Heap extract
	Slide 21: Percolate Up and Down (for a Min Heap)
	Slide 22: Representing a Heap
	Slide 23: Insert Pseudocode
	Slide 24: Percolate Up
	Slide 25: extract Pseudocode
	Slide 26: Percolate Down
	Slide 27: Other Operations
	Slide 28: Building a Heap From “Scratch”
	Slide 29: Floyd’s buildHeap method
	Slide 30: Floyd’s buildHeap method
	Slide 31: Floyd’s buildHeap method
	Slide 32: Floyd’s buildHeap method
	Slide 33: Floyd’s buildHeap method
	Slide 34: Floyd’s buildHeap method
	Slide 35: Floyd’s buildHeap method
	Slide 36: How long did this take?

