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ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• Usually a smaller priority value means the item is “more important”

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• extract

• Remove and return the “top priority” item from the queue
• Usually the item with the smallest priority value

• IsEmpty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable 
(i.e. you can use “<“ or “compareTo” with it)



Applications?



Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array

Unsorted Linked List

Sorted Array

Sorted Linked List

Binary Search Tree

For simplicity,  Assume we know the maximum size of the PQ in advance 
(otherwise we’d do an amortized analysis, but get the same answers…)



Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(1)
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(otherwise we’d do an amortized analysis, but get the same answers…)



Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(1)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 𝑛

Binary Heap Θ log 𝑛 Θ log 𝑛

For simplicity,  Assume we know the maximum size of the PQ in advance 
(otherwise we’d do an amortized analysis, but get the same answers…)



Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right
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Priority Queue Data Structure – Heap Idea

• Idea: Maintain a limited amount of order

• Θ(log 𝑛) worst case for extract and insert
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Achieving log 𝑛 Running Time

• What is the maximum number of total nodes in a binary tree of height ℎ?
• 2ℎ+1 − 1

• Θ 2ℎ

• If I have 𝑛 nodes in a binary tree, what is its minimum height?
• Find the smallest ℎ such that: 𝑛 ≤ 2ℎ+1 − 1
• Solve for ℎ: ⌈log 𝑛 + 1 − 1⌉ = ℎ
• Height is Θ log 𝑛

• Heap Idea:
• If 𝑛 values are inserted into a complete tree, the height will be roughly log 𝑛
• Ensure each insert and extract requires just one “trip” from root to leaf



(Min) Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “(Min) Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority
• Max Heap Property: every node’s priority is ≥ its children

• Where is the min?

• How do I insert?

• How do I extract?

• How to do it in Java?
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Heap Insert

insert(item, priority){

    put item in the “next open” spot (keep tree complete)

    while (priority < parent’s priority){

        swap item with parent

    }

}
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Heap Insert

insert(item, priority){

    put item in the “next open” spot (keep tree complete)

    while (priority < parent’s priority){

        swap item with parent

    }

}
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Heap Insert

insert(item, priority){

    put item in the “next open” spot (keep tree complete)

    while (priority < parent’s priority){

        swap item with parent

    }

}

1

3 2

4 1.5 5 6

5 9 7

Percolate Up



Heap Insert

insert(item, priority){

    put item in the “next open” spot (keep tree complete)

    while (priority < parent’s priority){

        swap item with parent

    }

}
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Heap Insert

insert(item, priority){

    put item in the “next open” spot (keep tree complete)

    while (priority < parent’s priority){

        swap item with parent

    }

}
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Heap extract

extract(){

    min = root

    curr = bottom-right item

    move curr to the root

    while(curr > curr.left || curr > curr.right){

        swap curr with its smallest child

    }

    return min

}
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Heap extract

extract(){

    min = root

    curr = bottom-right item

    move curr to the root

    while(curr > curr.left || curr > curr.right){

        swap curr with its smallest child

    }

    return min

}
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Heap extract

extract(){

    min = root

    curr = bottom-right item

    move curr to the root

    while(curr > curr.left || curr > curr.right){

        swap curr with its smallest child

    }

    return min

}
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Heap extract
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extract(){

    min = root

    curr = bottom-right item

    move curr to the root

    while(curr > curr.left || curr > curr.right){

        swap curr with its smallest child

    }

    return min

}

Percolate Down



Heap extract

extract(){

    min = root

    curr = bottom-right item

    move curr to the root

    while(curr > curr.left || curr > curr.right){

        swap curr with its smallest child

    }

    return min

}
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Percolate Up and Down (for a Min Heap)

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent 

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with 

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛



Representing a Heap

• Every complete binary tree with the same 
number of nodes uses the same positions 
and edges

• Use an array to represent the heap

• Index of root: 

• Parent of node 𝑖:

• Left child of node 𝑖:

• Right child of node 𝑖:

• Location of the leaves: 

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9



Insert Pseudocode

insert(item){

    if(size == arr.length – 1){resize();}

    size++;

    arr[size] = item;

    percolateUp(size)

} 
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Percolate Up

percolateUp(int i){

    int parent = i/2;  \\ index of parent

    Item val = arr[i];  \\ value at current location

    while(i > 1 && arr[i] < arr[parent]){  \\ until location is root or heap property holds

        arr[i] = arr[parent];  \\ move parent value to this location

        arr[parent] = val; \\ put current value into parent’s location 

        i = parent;  \\ make current location the parent

        parent = i/2;  \\ update new parent

    }

}



extract Pseudocode

extract(){

    theMin = arr[1];

    arr[1] = arr[size];

    size--;

    percolateDown(1);

    return theMin;

} 



Percolate Down
percolateDown(int i){

    int left = i*2;  \\ index of left child

    int right = i*2+1;  \\ index of right child

    Item val = arr[i];  \\ value at location

    while(left <= size){  \\ until location is leaf

        int toSwap = right;

        if(right > size || arr[left] < arr[right]){  \\ if there is no right child or if left child is smaller

            toSwap = left;  \\ swap with left

        } \\ now toSwap has the smaller of left/right, or left if right does not exist

        if (arr[toSwap] < val){  \\ if the smaller child is less than the current value

            arr[i] = arr[toSwap];

            arr[toSwap] = val; \\ swap parent with smaller child

            i = toSwap; \\ update current node to be smaller child

            left = i*2;

            right = i*2+1;

        }

        else{ return;} \\ if we don’t swap, then heap property holds

    }

}



Other Operations

• Increase Key
• Given the index of an item in the PQ, make its priority value larger

• Min Heap: Then percolate down

• Max Heap: Then percolate up

• Decrease Key
• Given the index of an item in the PQ, make its priority value smaller

• Min Heap: Then percolate up

• Max Heap: Then percolate down

• Remove
• Given the item at the given index from the PQ



Building a Heap From “Scratch”

• Suppose we had 𝑛 items and wanted to “heapify” them
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Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down



Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
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Floyd’s buildHeap method
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        percolateDown(i);
    }
}

Violate Heap Property!
Nodes bigger than a child
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Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them
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Violate Heap Property!

buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}



How long did this take?

• Worst case running time of buildHeap:

• No node can percolate down more than the height of its subtree
• When i is a leaf:

• When i is second-from-last level:

• When i is third-from-last level:

• Overall Running time:

buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
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