CSE 332 Winter 2026
Lecture 4: Algorithm Analysis
and Priority Queues

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Goals for Algorithm Analysis

* |dentify a function which maps the algorithm’s input size to a measure
of resources used
 Domain of the function: sizes of the input
 Number of characters in a string, number of items in a list, number of pixels in an image

* Codomain of the function: counts of resources used

* Number of times the algorithm adds two numbers together, number times the algorithm
does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time

* Important note: Make sure you know the “units” of your domain and
codomain!

 Domain = inputs to the function
 Codomain = outputs to the function

e 5
S g
{4

~ 0006¥
0009t
000tV
0000Y
000Lt
0oore
000TE
0008¢
000s¢
000zt
0oo6T
00091
000¢€T
0oooT
0004

000v

0001

90

80
70
60
50
40
30
20
10

0

Comparing

—4—bhinary
== |ircar

12

Comparing Running Times

e Suppose | have these algorithms, all of which have the same
input/output behavior:
e Algorithm A’s worst case running time is 10n 4+ 900

e Algorithm B’s worst case running time is 100n — 50
2
e Algorithm C’s worst case running time is L.

100
* Which algorithm is best?

c2g(n)
f(n)

c1g(n

Tig

f(m) =0(g(n))
f(n) =06(gn))
f(n) = Q(g(n))

Asymptotic Notation

» 0(g())

* The set of functions with asymptotic behavior less than or equal to g(n)
* Upper-bounded by a constant times g for large enough values n

* f€0(g(n)) =3c>0.3ny > 0.Yn =ny.f(n) < c-g(n)

* Q(g(n))
* the set of functions with asymptotic behavior greater than or equal to g(n)
* Lower-bounded by a constant times g for large enough values n

« fE€Q(g(n)) =3c>0.3n5 > 0.Vn = ngy. f(n) = c- g(n)

» 0(g(n))

e “Tightly” within constant of g for large n

- Q(g(m)) n0(g(n)

Asymptotic Notation Example

* Show: 10 + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny > 0 such that Vn > n,.10n + 100 < ¢ - n?
* Scratch work:

Asymptotic Notation Example

 Show: 10n + 100 € 0(n?)
e Technique: find values ¢ > 0 and ny, > 0 such that Vn > n,.10n + 100 < ¢ - n*
* Proof:

Asymptotic Notation Example

 Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Scratch work:

Asymptotic Notation Example

 Show: 13n? — 50n € Q(n?%)
e Technique: find values ¢ > 0 and n, > 0 such that Vn > n,.13n% — 50n > ¢ - n?
* Proof:

Asymptotic Notation Example

 Show: n? & 0(n)

Asymptotic Notation Example

Proof by

[) * 2
To Show: n“ ¢ 0(n) Contradiction!

* Technique: Contradiction

e Proof: Assumen? € O(n). Then3c,ng > 0s.t.Vn > ny,n? < cn
Let us derive constant c. Foralln > ny > 0, we know:
cn > n?,
c = n.

Since c is lower bounded by n, ¢ cannot be a constant and make this
True.
Contradiction. Therefore n? & 0(n).

Galning Intuition

 When doing asymptotic analysis of functions:
* If multiple expressions are added together, ignore all but the “biggest”
* If f(n) grows asymptotically faster than g(n), then f(n) + g(n) € @(f(n))
* Ignore all multiplicative constants
e f(n)+ce @(f(n)) for any constantc € R
* Ignore bases of logarithms

* Do NOT ignore:
* Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
* Logarithms themselves

* Examples:
*4n + 5
* 0.5nlogn + 2n + 7
« n®+ 2"+ 3n
 nlog(10n?)

More Examples

* |s each of the following True or False?
*4+3n€ 0(n)
*n+ 2logn € 0(logn)
*logn+2¢€ 0(1)
- n°Y € 0(1.1M)
« 3" e 02"

Common Categories

*0(1) “constant”

* O(logn) “logarithmic”
* 0(n) “linear”

* O(nlogn) “log-linear”

« 0(n?) “quadratic”

« 0(n3) “cubic”

» 0(n*) “polynomial”
e O(k™) “exponential”

ADT: Queue

e What is it?
e A “First In First Out” (FIFO) collection of items

* What Operations do we need?
* Enqueue
* Add a new item to the queue
* Dequeue
 Remove the “oldest” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

ADT: Priority Queue

* What is it?
* A collection of items and their “priorities”
 Allows quick access/removal to the “top priority” thing

* What Operations do we need?
* insert(item, priority)
* Add a new item to the PQ with indicated priority
e Usually, smaller priority value means more important
* extract
* Remove and return the “top priority” item from the queue
* |s_empty
* Indicate whether or not there are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.extract)
Print(PQ.extract)
Print(PQ.extract)
Print(PQ.extract)
Print(PQ.extract)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.extract)
PQ.insert(3,3)
Print(PQ.extract)
Print(PQ.extract)
PQ.insert(8,8)
Print(PQ.extract)
Print(PQ.extract)

Applications?

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array
Unsorted Linked List
Sorted Array

Sorted Linked List

Binary Search Tree

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers...)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array 0(1) O(n)
Unsorted Linked List 0(1) 0(n)
Sorted Array O(n) O(1)
Sorted Linked List O(n) 0(1)
Binary Search Tree O(n) O(n)

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers...)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to extract

Unsorted Array 0(1) O(n)
Unsorted Linked List 0(1) 0(n)
Sorted Array O(n) O(1)
Sorted Linked List O(n) 0(1)
Binary Search Tree O(n) O(n)
Binary Heap O(logn) O(logn)

For simplicity, Assume we know the maximum size of the PQ in advance
(otherwise we’d do an amortized analysis, but get the same answers...)

Trees for Heaps

* Binary Trees:
* The branching factor is 2
* Every node has < 2 children

 Complete Tree:

* All “layers” are full, except the bottom
* Bottom layer filled left-to-right

Heap — Priority Queue Data Structure

* |dea: We need to keep some ordering, but it doesn’t need to be
entirely sorted

* O(logn) worst case for extract and insert

Heap — Priority Queue Data Structure

* |dea: We need to keep some ordering, but it doesn’t need to be
entirely sorted

* O(logn) worst case for extract and insert

Challenge!

* What is the maximum number of total nodes in a binary tree of
height h?

o 2h+1 —1
- 0(2")

* If have n nodes in a binary tree, what is its minimum height?
* O(logn)

* Heap ldea:
* If n values are inserted into a complete tree, the height will be roughly logn
* Ensure each insert and extract requires just one “trip” from root to leaf

(Min) Heap Data Structure

* Keep items in a complete binary tree

* Maintain the “(Min) Heap Property” of the tree
e Every node’s priority is < its children’s priority
* Max Heap Property: every node’s priority is = its children

* Where is the min?

* How do | insert?

* How do | extract?

* How to do it in Java?

	Slide 1: CSE 332 Winter 2026 Lecture 4: Algorithm Analysis and Priority Queues
	Slide 2: Goals for Algorithm Analysis
	Slide 3: Comparing
	Slide 4: Comparing Running Times
	Slide 5
	Slide 6: Asymptotic Notation
	Slide 7: Asymptotic Notation Example
	Slide 8: Asymptotic Notation Example
	Slide 9: Asymptotic Notation Example
	Slide 10: Asymptotic Notation Example
	Slide 11: Asymptotic Notation Example
	Slide 12: Asymptotic Notation Example
	Slide 13: Gaining Intuition
	Slide 14: More Examples
	Slide 15: Common Categories
	Slide 16: ADT: Queue
	Slide 17: ADT: Priority Queue
	Slide 18: Priority Queue, example
	Slide 19: Priority Queue, example
	Slide 20: Applications?
	Slide 21: Thinking through implementations
	Slide 22: Thinking through implementations
	Slide 23: Thinking through implementations
	Slide 24: Trees for Heaps
	Slide 25: Heap – Priority Queue Data Structure
	Slide 26: Heap – Priority Queue Data Structure
	Slide 27: Challenge!
	Slide 28: (Min) Heap Data Structure

