

CSE 332 Winter 2026

Lecture 3: Algorithm Analysis

pt.2

Nathan Brunelle

<http://www.cs.uw.edu/332>

Running Time Analysis

- Units of “time”
 - Operations
 - Whichever operations we pick
- How do we express running time?
 - Function
 - Domain (input): size of the input
 - Range: count of operations

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on “most challenging” input
- Best-case complexity:
 - min number of steps algorithm takes on “easiest” input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M “most challenging” consecutive inputs, divided by M (i.e., divide the max total sum by M).

Worst Case Running Time Analysis

- If an algorithm has a worst case **running time** of $f(n)$
 - Among all possible size- n inputs, the “worst” one will do $f(n)$ “**operations**”
 - $f(n)$ gives the maximum count of **operations** needed from among all inputs of size n

Worst Case Running Time – General Guide

- Add together the time of consecutive statements
- Loops: Sum up the time required through each iteration of the loop
 - If each takes the same time, then $[\text{time per loop} \times \text{number of iterations}]$
- Conditionals: Sum together the time to check the condition and time of the slowest branch
- Function Calls: Time of the function's body
- Recursion: Solve a **recurrence relation**

```
myFunction(List n){  
    b = 55 + 5;  
    c = b / 3;  
    b = c + 100;  
    for (i = 0; i < n.size(); i++) {  
        b++;  
    }  
    if (b % 2 == 0) {  
        c++;  
    }  
    else {  
        for (i = 0; i < n.size(); i++) {  
            c++;  
        }  
    }  
    return c;  
}
```

Worst Case Running Time - Example

Questions to ask:

- What are the units of the input size?
- What are the operations we're counting?
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with different inputs?
- Answer:

```
myFunction(List n){  
    b = 55 + 5; // 1  
    c = b / 3; // 1  
    b = c + 100; // 1  
    for (i = 0; i < n.size(); i++) { // 1, n times  
        b++; // 1  
    }  
    if (b % 2 == 0) { // 1  
        c++; // 1  
    }  
    else {  
        for (i = 0; i < n.size(); i++) { // 1, n times  
            c++; // 1  
        }  
    }  
    return c;  
}
```

Worst Case Running Time - Example

Questions to ask:

- What are the units of the input size?
 - # of items in the list
- What are the operations we're counting?
 - Arithmetic ops (+-* /)
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with different inputs?
- Answer:
 - $3 + 2n + 1 + 2n = 4n + 4$
 - $O(n)$

Worst Case Running Time – Example 2

```
beAnnoying(List n){  
    List m = [];  
    for (i=0; i < n.size(); i++){  
        m.add(n[i]);  
        for (j=0; j< n.size(); j++){  
            print ("Hi, I'm annoying");  
        }  
    }  
}
```

Questions to ask:

- What are the units of the input size?
- What are the operations we're counting?
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with the input size?

Worst Case Running Time – Example 2

```
beAnnoying(List n){  
    List m = [];  
    for (i=0; i < n.size(); i++){ // n times  
        m.add(n[i]);  
        for (j=0; j< n.size(); j++){ // n times  
            print ("Hi, I'm annoying"); // 1  
        }  
    }  
}
```

Questions to ask:

- What are the units of the input size?
 - # items
- What are the operations we're counting?
 - Adding or printing
 - Printing: $O(n^2)$
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with the input size?

Amortized Analysis Analogy

- Suppose I'd like to park in a lot where they charge \$10 per day to park
- If you are caught in the lot without paying you are given a warning
- If you get 3 warnings, you are charged a \$25 fine, and your warnings reset.
- Should you actually pay to park?
 - If you pay every day then you pay an average of \$10 per day
 - If you do not pay then for every three days parking costs \$0+\$0+\$25, for an average of \$8.33 per day
 - Worst case analysis: parking costs \$25
 - Amortized analysis: parking costs \$8.33

Amortized Complexity Example - ArrayList

```
public void add(T value){  
    if(data.length == size)  
        resize();  
    data[size] = value;  
    size++;  
}  
  
private void resize(){  
    T[] oldData = data;  
    data = (T[]) new Object[data.length*2];  
    for(int i = 0; i < oldData.length; i++)  
        data[i] = oldData[i];  
}
```

- What is the worst case running time of add?
 - Input size: size of “this”
 - Operations counted: indexing
 - $O(n)$

Amortized Complexity Example - ArrayList

```
public void add(T value){  
    if(data.length == size)  
        resize();  
    data[size] = value;  
    size++;  
}  
  
private void resize(){  
    T[] oldData = data;  
    data = (T[]) new Object[data.length*2];  
    for(int i = 0; i < oldData.length; i++)  
        data[i] = oldData[i];  
}
```

Every time we resize, we earn
data.length more adds
guaranteed to not resize!

- Amortized Analysis Idea:
 - Suppose we have a program that in total does n adds.
 - How much time was spent “on average” across all n ?
- Let c be the initial size of data
 - The first c adds take: $c + c = 2c$
 - The next $2c$ adds: $2c + 2c = 4c$
 - The next $4c$ adds: $4c + 4c = 8c$
 - Overall: c adds take an average of $2c$ time

Searching in a Sorted List

5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

```
public static boolean contains(List<Integer> a, int k){  
    for(int i=0; i< a.size(); i++){  
        if (a.get(i) == k)  
            return true;  
    }  
    return false;  
}
```

Faster way?

5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

Can you think of a faster algorithm to solve this problem?

Binary Search

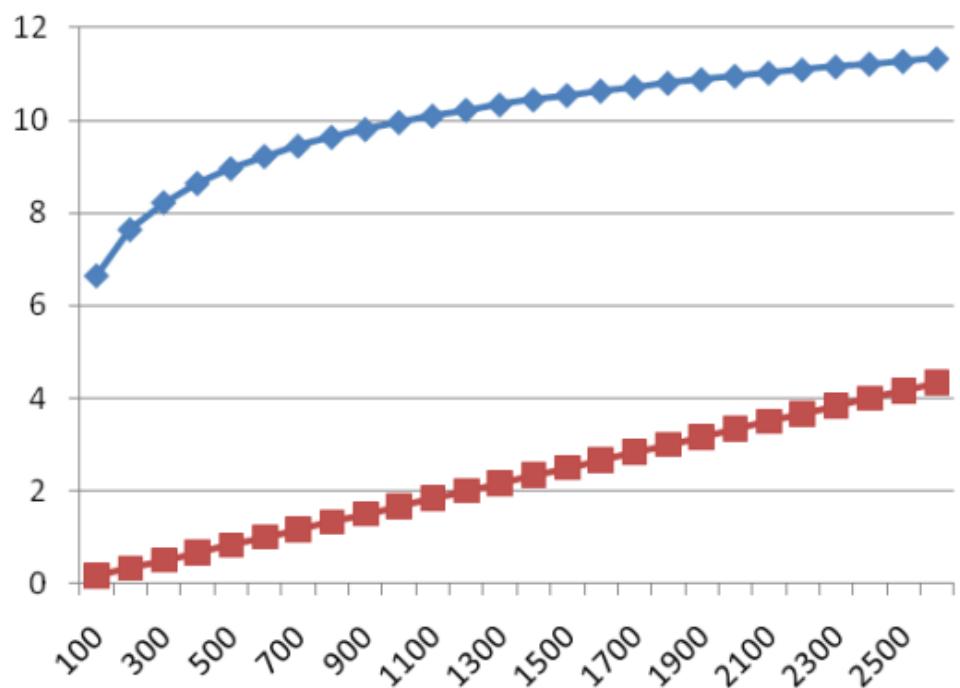
5	8	13	42	75	79	88	90	95	99
0	1	2	3	4	5	6	7	8	9

```
public static boolean contains(List<Integer> a, int k){  
    int start = 0;  
    int end = a.size();  
    while(start < end){  
        int mid = start + (end-start)/2;  
        if(a.get(mid) == k)  
            return true;  
        else if(a.get(mid) < k)  
            start = mid+1;  
        else  
            end = mid;  
    }  
    return false;  
}
```

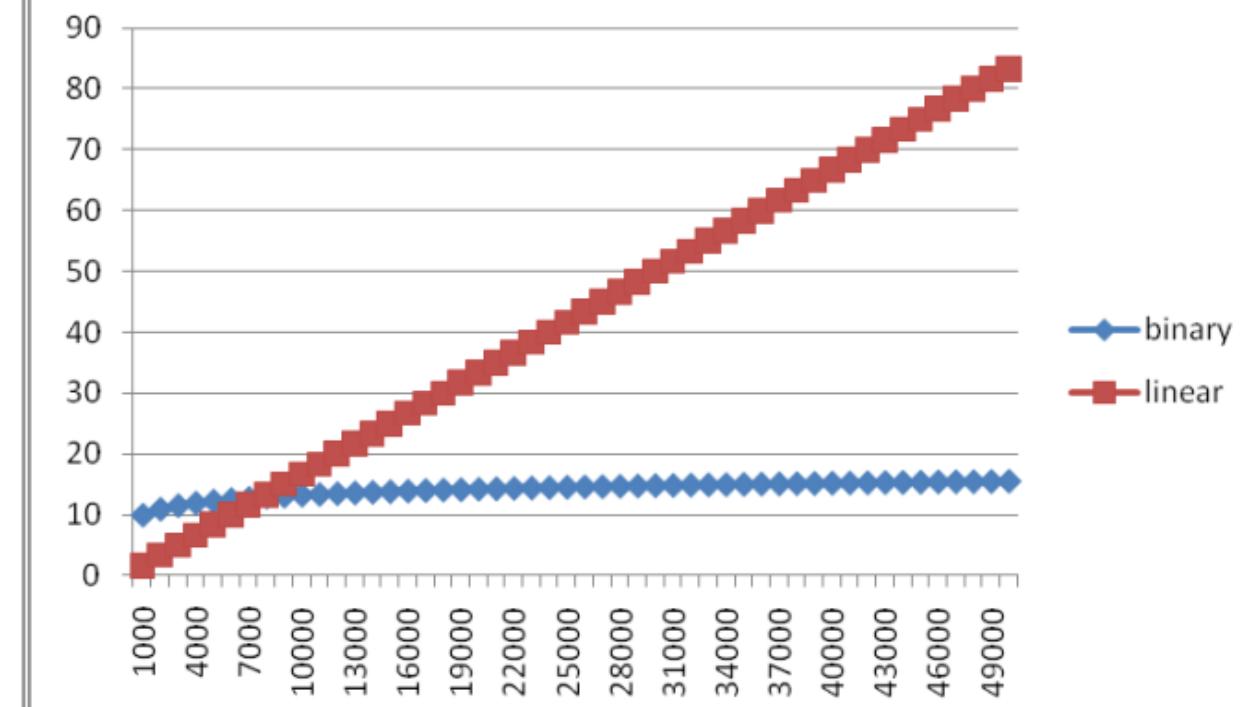
Why is this $\log_2 n$?

- In the beginning: $\text{end-start}=n$
- After 1 iteration: $\text{end-start}=\frac{n}{2}$
 - $\text{mid-start} = (\text{start}+(\text{end-start})/2)-\text{start}$
 - $\text{end-mid} = \text{end}-(\text{start}+(\text{end-start})/2)$
- Each iteration cuts the “gap” in half!
- We stop when the gap is 1

Comparing



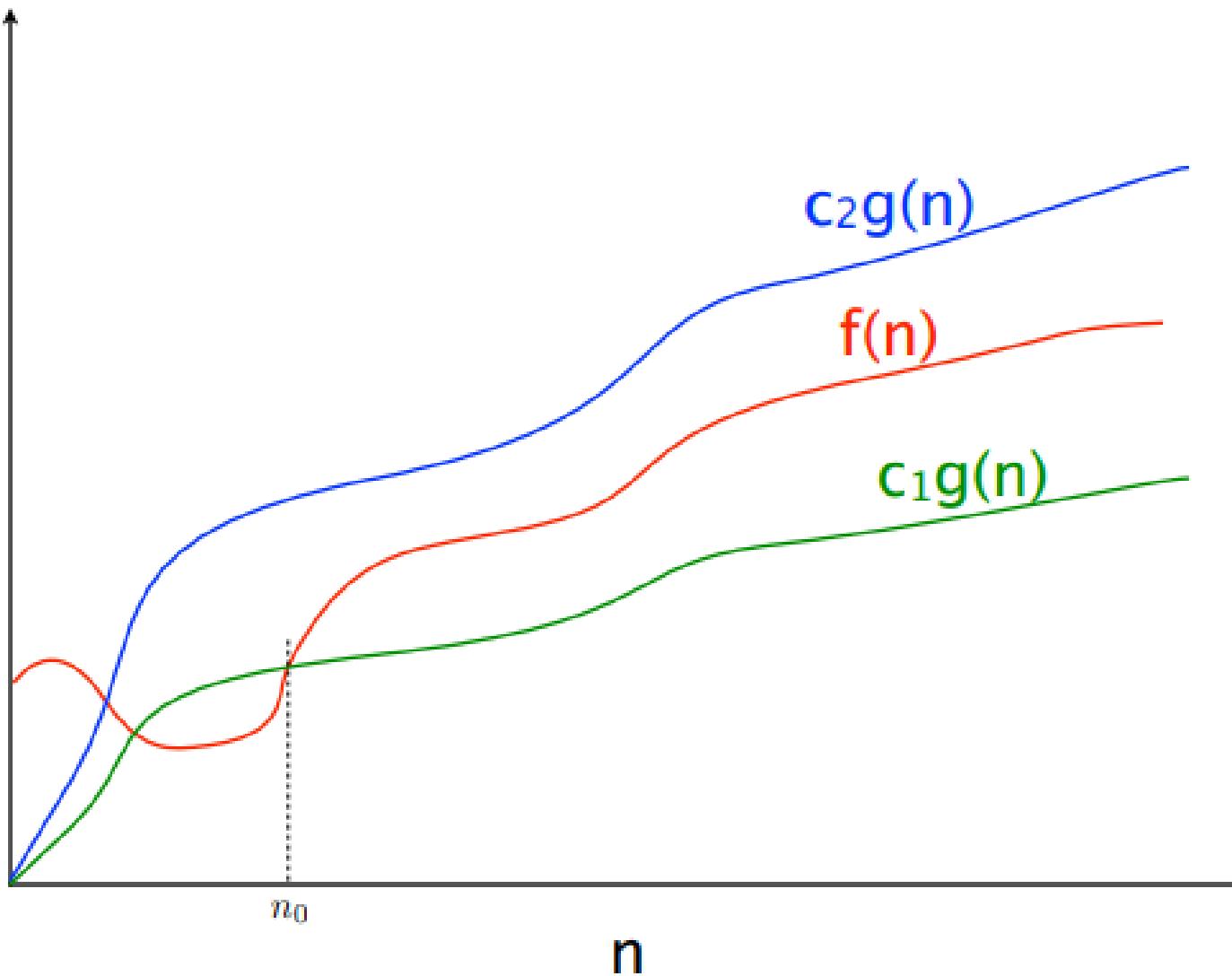
binary
linear



binary
linear

Comparing Running Times

- Suppose I have these algorithms, all of which have the same input/output behavior:
 - Algorithm A's worst case running time is $10n + 900$
 - Algorithm B's worst case running time is $100n - 50$
 - Algorithm C's worst case running time is $\frac{n^2}{100}$
- Which algorithm is best?



$$f(n) = O(g(n))$$

$$f(n) = \Theta(g(n))$$

$$f(n) = \Omega(g(n))$$

Asymptotic Notation

- $O(g(n))$
 - The **set of functions** with asymptotic behavior less than or equal to $g(n)$
 - **Upper-bounded** by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \leq c \cdot g(n)$
- $\Omega(g(n))$
 - the **set of functions** with asymptotic behavior greater than or equal to $g(n)$
 - **Lower-bounded** by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0. \exists n_0 > 0. \forall n \geq n_0. f(n) \geq c \cdot g(n)$
- $\Theta(g(n))$
 - “**Tightly**” within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$

Idea of Θ

- $x = y$
 - $x \leq y \wedge x \geq y$

Asymptotic Notation Example

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n > n_0$. $10n + 100 \leq c \cdot n^2$
 - **Proof:**

Asymptotic Notation Example

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0$. $10n + 100 \leq c \cdot n^2$
 - **Proof:** Let $c = 10$ and $n_0 = 6$. Show $\forall n \geq 6$. $10n + 100 \leq 10n^2$
$$\begin{aligned}10n + 100 &\leq 10n^2 \\ \equiv n + 10 &\leq n^2 \\ \equiv 10 &\leq n^2 - n \\ \equiv 10 &\leq n(n - 1)\end{aligned}$$

This is True because $n(n - 1)$ is strictly increasing and $6(6 - 1) > 10$

Asymptotic Notation Example

- Show: $13n^2 - 50n \in \Omega(n^2)$
 - **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0. 13n^2 - 50n \geq c \cdot n^2$
 - **Proof:**
 - $c =$
 - $n_0 =$

Asymptotic Notation Example

- Show: $13n^2 - 50n \in \Omega(n^2)$
 - **Technique:** find values $c > 0$ and $n_0 > 0$ such that $\forall n \geq n_0. 13n^2 - 50n \geq c \cdot n^2$
 - **Proof:** let $c = 12$ and $n_0 = 50$. Show $\forall n \geq 50. 13n^2 - 50n \geq 12n^2$
$$\begin{aligned}13n^2 - 50n &\geq 12n^2 \\ \equiv n^2 - 50n &\geq 0 \\ \equiv n^2 &\geq 50n \\ \equiv n &\geq 50\end{aligned}$$
This is certainly true $\forall n \geq 50$.

Asymptotic Notation Example

- Show: $n^2 \notin O(n)$
- Want to show that there does not exist a pair of c and n_0 such that $\forall n_0 > n. n^2 \leq c \cdot n$

Asymptotic Notation Example

- To Show: $n^2 \notin O(n)$
 - **Technique: Contradiction**
 - **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s.t. $\forall n > n_0, n^2 \leq cn$
Let us derive constant c . For all $n > n_0 > 0$, we know:
 $cn \geq n^2$,
 $c \geq n$.

Proof by
Contradiction!

Since c is lower bounded by n , c cannot be a constant and make this True.
Contradiction. Therefore $n^2 \notin O(n)$.

Gaining Intuition

- When doing asymptotic analysis of functions:
 - If multiple expressions are added together, ignore all but the “biggest”
 - If $f(n)$ grows asymptotically faster than $g(n)$, then $f(n) + g(n) \in \Theta(f(n))$
 - Ignore all multiplicative constants
 - $f(n) + c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
 - Ignore bases of logarithms
 - Do NOT ignore:
 - Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 - Logarithms themselves
- Examples:
 - $4n + 5$
 - $0.5n\log n + 2n + 7$
 - $n^3 + 2^n + 3n$
 - $n\log(10n^2)$

More Examples

- Is each of the following True or False?

- $4 + 3n \in O(n)$
- $n + 2 \log n \in O(\log n)$
- $\log n + 2 \in O(1)$
- $n^{50} \in O(1.1^n)$
- $3^n \in \Theta(2^n)$

Common Categories

- $O(1)$ “constant”
- $O(\log n)$ “logarithmic”
- $O(n)$ “linear”
- $O(n \log n)$ “log-linear”
- $O(n^2)$ “quadratic”
- $O(n^3)$ “cubic”
- $O(n^k)$ “polynomial”
- $O(k^n)$ “exponential”

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on “most challenging” input
- Best-case complexity:
 - min number of steps algorithm takes on “easiest” input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M “most challenging” consecutive inputs, divided by M (i.e., divide the max total sum by M).

Beware!

- Worst case, Best case, amortized are ways to select a function
- O , Ω , Θ are ways to compare functions
- You can mix and match!
- The following statements totally make sense!
 - The worst case running time of my algorithm is $\Omega(n^3)$
 - The best case running time of my algorithm is $O(n)$
 - The best case running time of my algorithm is $\Theta(2^n)$