CSE 332 Winter 2026
Lecture 2: Algorithm Analysis

pt.1

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Announcements

* Exercise O released
* Due Wednesday 1/14
* There are 2 separate gradescope submissions

e Concept check O released
* Helps us to get more familiar with each other!
* Gradescope submission due 1/15

* Meet the staff activity due by 1/30
 Come to any office hours, chat with us, ask us to mark you off for this

Linked Queue Data Structure (Algorithms)

front [e——) 5 m—p 8 = 3 = 4 m—p 7

* Queue represented as a “chain” of items T
* A “front” reference to the oldest item
* A “back” reference to the most recent item
* Each Node references the item enqueued after it

* enqueue Procedure: enqueue(x){
last = new ListNode(x);

back.next = last;

back

back = last;
} dequeue () {
» dequeue Procedure: ﬁ;iﬁ = gggzxz}(ze
if (front == null),{back = null;}
return first
isEmpty(){ :
* ISEmpty Procedure: return front == null,;

}

“Circular” Array Queue (ldea)

front=0

5|18 |3 |4]7
0 1 2 3 4 5 6 7 8 9 back=5s

* Queue represented as an array of items
e A “front” index to indicate the oldest item in the queue

* A “back” index to indicate the most recent item in the queue
e Actually, the first “open” slot in the array

* enqueue Procedure:

* dequeue Procedure:

* isEmpty Procedure:

“Circular™ Array

* Intuitively, An array of values arranged in a “circle” rather than a line
* If you go beyond the last index, to wrap back around to O

front=0

back=5

“Circular” Array Queue (Algorithms)

5 8 3 4

7

0 1 2 3

4

5 6 7 3 9

* Queue represented as an array of items

e A “front” index to indicate the oldest item in the queue
* A “back” index to indicate the most recent item in the queue

* enqueue Procedure:

* dequeue Procedure:

enqueue(x){

}

queue[back] = x;

front=0

back=5

back = (back + 1) % queue.length;

size++;

dequeue(){

// Assumes queue is not empty

first = queue[front];

front
size--;
return first;

* isSEmpty Procedure: isemptyy '}

}

return size == 0;

What if we run out of space?!

(front + 1) % queue.length;

Resizing “Circular” Array Queue

front=0

5 8 3 4 7

0 1 2 3 4 > 6 7 8 9 back=5 How do you resize?
* Queue represented as an array of items

That’s for Exercise 0!

e A “front” index to indicate the oldest item in the queue

* A “back” index to indicate the most recent item in the queue
enqueue(x){
* enqueue Procedure: if (size == queue.length-1) {resize();}
queue[back] = x;
back = (back + 1) % queue.length;
size++;
o3 dequeue(){
¢ dequeue PrOcedure. // Assumes queue is not empty
first = queuel[front];
front = (front + 1) % queue.length;
size--;
return first;

* isEmpty Procedure: isemptyOs }

return size == 0;
¥

Linked List vs. Circular Array

e Let’s Summarize the benefits and drawbacks of each

ADT: Stack

e What is it?
e A “Last In First Out” (LIFO) collection of items (sometimes called FILO)

* What operations do we need?
* push
* Add a new item onto the stack
* peek
e Return the value of the most recently pushed item
* pop
* Return the value of the most recently pushed item and remove it from the stack
* isEmpty

* Indicate whether or not there are items still on the stack

Motivating Example

Let’s design an algorithm

have a pile of string

have one end of the string in-hand

need to find the other end in the pile
How can | do this efficiently?

Algorithm ldeas

 Whatcha got?

My Approach

13

End-of-Yarn Finding Algorithm

Set aside the already-obtained beginning

Do the following until you find the end:
Separate the pile of yarn into 2 piles
Label A to be the pile that the beginning enters
Label B to be the other pile
Count the number of strands crossing the piles
If count is even, set the pile to be A
Otherwise set the pile to be B.

14

Resource Analysis

Why do resource analysis?

* Allows us to compare algorithms, not implementations
 Using observations necessarily couples the algorithm with its implementation

* |f my implementation on my computer takes more time than your
implementation on your computer, we cannot conclude your algorithm is
better

* We can predict an algorithm’s running time before implementing
* Understand where the bottlenecks are in our algorithm

Process for resource Analysis

* End Result: A function which maps the algorithm’s input size to count
of resources used
* Input of the function: sizes of the input
 Number of characters in a string, number of items in a list, number of pixels in an image

e Output of the function: counts of resources used
* Number of times the algorithm adds two numbers together, number times the algorithm
does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time
“) .
* Important note: Make sure you know the “units” of your input and
output!

Resource Analysis — Worst Case Running Time

* If an algorithm has a worst case running time of f(n)
 Among all possible size-n inputs, the “worst” one will do f(n) “operations”
* le. f(n) gives the maximum operation count from among all inputs of size n

Resource Analysis — Best Case Running Time

* If an algorithm has a best case running time of f (n)
 Among all possible size-n inputs, the “best” one will do f (n) “operations”
* le. f(n) gives the minimum operation count from among all inputs of size n

Resource Analysis — Worst Case Space

* If an algorithm has a worst case space of f(n)
 Among all possible size-n inputs, the “worst” one will use f(n) bits of memory

* le. f(n) gives the maximum amount of memory required from among all
inputs of size n

Analysis Process From 123/143

* Count the number of “primitive operations”
e +, -, compare, arr[i], arr.length, etc

* Write that count as an expression using n (the input size)

e Put that expression into a “bucket” by ignoring constants and “non-
dominant” terms, then put a O() around it.

* 4n? + 8n — 10 ends up as 0(n?)
. %n + 80 ends up as 0(n)
e n(n + 1) ends up as 0(n?)

Analysis Process For Us

e Count the number of chosen operation(s)

* Factors to consider when choosing which operation(s) to count
* Necessity: should be necessary for solving the problem
* Frequency: should be the most frequently done (up to a constant factor)
* Magnitude: should be expensive to perform each chosen operation

* Write that count as an expression using n (the input size)

e Put an asymptotic bound on it (one of O, (), 0)
* More on this next class

myfunctionistny VWorst Case Running Time - Example

b=55+5;

c=b/3; Questions to ask:
b =c+ 100; What are the units of the input size?
for (i = 0; i < n.size(); i++) {
b++; What are the operations we’re counting?
}
if (b % 2==0){ For each line:
C++; * How many times will it run?
} * How long does it take to run?
else { * Does this change with different inputs?
for (i = 0; i < n.size(); i++) { * Answer:
C++,
}
}
return c;

myfunctionistny VWorst Case Running Time - Example

b=55+5;//1

c=b/3; //1 Questions to ask:
b=c+100; //1 What are the units of the input size?
for (i=0; i < n.size(); i++) {// 1, n times e # of items in the list
b++; // 1 What are the operations we’re counting?
} * Arithmetic ops (+-*/)
if(b%2==0){//1 For each line:
c++; // 1 * How many times will it run?
} * How long does it take to run?
else { * Does this change with different inputs?
for (i=0; i< n.size(); i++) {// 1, n times e Answer:
c++; /11 e 34+2n+1+4+2n=4n+4
} * 0(n)
}
return c;

}

Worst Case Running Time — Example 2
beAnnoying(List n){

Questions to ask:
List m = []; * What are the units of the input size?

for (i=0; i < n.size(); i++){
m.add(nli]);

for (j=0; j< n.size(); j++){ * For each line:

* How many times will it run?

* How long does it take to run?

} * Does this change with the input size?

 What are the operations we’re counting?

print (“Hi, I'm annoying”);

Worst Case Running Time — Example 2
beAnnoying(List n){

Questions to ask:
List m = []; What are the units of the input size?
for (i=0; i < n.size(); i++){ // n times © #items
_ What are the operations we’re counting?

m.add(nli]); e Adding or printing
for (j=0; j< n.size(); j++){ // n times * Printing: 0(n?)
e For each line:

* How many times will it run?

} How long does it take to run?

} * Does this change with the input size?

print (“Hi, I'm annoying”); // 1

Worst Case Running Time — General Guide

* Add together the time of consecutive statements

e Loops: Sum up the time required through each iteration of the loop
* If each takes the same time, then [time per loop X number of iterations]

* Conditionals: Sum together the time to check the condition and time
of the slowest branch

* Function Calls: Time of the function’s body
* Recursion: Solve a recurrence relation

Defining your running time function

* Worst-case complexity:
* max number of steps algorithm takes on “most challenging” input

* Best-case complexity:
* min number of steps algorithm takes on “easiest” input

* Average/expected complexity:
* avg number of steps algorithm takes on random inputs (distribution-dependent)

* Amortized complexity:

* max total number of steps algorithm takes on M “most challenging” consecutive
inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

public void add(int value){ What is the worst case running

if(data.length == size) time of add?
resize(); .) _ o
data[size] = value; * Input 5|.ze. size of thI'S |
size++; * Operations counted: indexing
} * 0(n)

private void resize(){
int[] oldData = data;
data = new int[data.length*2];
for(int i = 0; i < oldData.length; i++)
data[i] = oldData[i];

Amortized Complexity Example - ArrayList

public void add(int value){ e Amortized Analysis Idea:

if(data.length == si
if(data.leng size) * Suppose we have a program that

resize(); . . in total does n adds.
data[size] = value; Every time we resize, we earn ' .
cizett: data.length more adds e How much time was spent “on
’ before the next resize! average” across all n?
}
private void resize(){ * Let ¢ be the initial size of data
int[] oldData = data; * The first c adds take: c + ¢ = 2c
data = new int[data.length*2]; e The next 2c adds: 2¢ + 2¢c = 4c

for(int i = 0; i < oldData.length; i++) e The next 4c adds: 4c + 4c = 8¢
data[i] = oldData[i]; 14c |

} e Qverall:— = 2c
7¢

Amortized Analysis Analogy

 Suppose I'd like to park in a lot where they charge S10 per day to park
* If you are caught in the lot without paying you are given a warning

* |f you get 3 warnings, you are charged a $25 fine, and your warnings
reset.

* Should you actually pay to park?
* |f you pay every day then you pay an average of S10 per day

* |f you do not pay then for every three days parking costs SO+S0+525, for an
average of $8.33 per day

* This is an amortized analysis

	Slide 1: CSE 332 Winter 2026 Lecture 2: Algorithm Analysis pt.1
	Slide 2: Announcements
	Slide 3: Linked Queue Data Structure (Algorithms)
	Slide 4: “Circular” Array Queue (Idea)
	Slide 5: “Circular” Array
	Slide 6: “Circular” Array Queue (Algorithms)
	Slide 7: Resizing “Circular” Array Queue
	Slide 8: Linked List vs. Circular Array
	Slide 9: ADT: Stack
	Slide 10: Motivating Example
	Slide 11: Let’s design an algorithm
	Slide 12: Algorithm Ideas
	Slide 13: My Approach
	Slide 14: End-of-Yarn Finding Algorithm
	Slide 15: Resource Analysis
	Slide 16: Why do resource analysis?
	Slide 17: Process for resource Analysis
	Slide 18: Resource Analysis – Worst Case Running Time
	Slide 19: Resource Analysis – Best Case Running Time
	Slide 20: Resource Analysis – Worst Case Space
	Slide 21: Analysis Process From 123/143
	Slide 22: Analysis Process For Us
	Slide 23: Worst Case Running Time - Example
	Slide 24: Worst Case Running Time - Example
	Slide 25: Worst Case Running Time – Example 2
	Slide 26: Worst Case Running Time – Example 2
	Slide 27: Worst Case Running Time – General Guide
	Slide 28: Defining your running time function
	Slide 29: Amortized Complexity Example - ArrayList
	Slide 30: Amortized Complexity Example - ArrayList
	Slide 31: Amortized Analysis Analogy

