
CSE 332 Winter 2026
Lecture 2: Algorithm Analysis

pt.1
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Announcements

• Exercise 0 released
• Due Wednesday 1/14

• There are 2 separate gradescope submissions

• Concept check 0 released
• Helps us to get more familiar with each other!

• Gradescope submission due 1/15

• Meet the staff activity due by 1/30
• Come to any office hours, chat with us, ask us to mark you off for this

Linked Queue Data Structure (Algorithms)

• Queue represented as a “chain” of items
• A “front” reference to the oldest item
• A “back” reference to the most recent item
• Each Node references the item enqueued after it

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

8 3 4 75front

back

enqueue(x){
 last = new ListNode(x);
 back.next = last;
 back = last;
} dequeue(){

 first = front.value;
 front = front.next;
 if (front == null) {back = null;}
 return first
}

isEmpty(){
 return front == null;
}

“Circular” Array Queue (Idea)

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue
• Actually, the first “open” slot in the array

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

4 5 6 7321 80 9

74385
front=0

back=5

“Circular” Array

• Intuitively, An array of values arranged in a “circle” rather than a line
• If you go beyond the last index, to wrap back around to 0

4 5 6 7321 80 9

74385

0

1

2

3

45

6

7

8

9

5

8

3

4

7

front=0

back=5

…

…

…

…

…

“Circular” Array Queue (Algorithms)

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

4 5 6 7321 80 9

74385
front=0

back=5

enqueue(x){
 queue[back] = x;
 back = (back + 1) % queue.length;
 size+=;
} dequeue(){

 /= Assumes queue is not empty
 first = queue[front];
 front = (front + 1) % queue.length;
 size-=;
 return first;
}isEmpty(){

 return size == 0;
}

What if we run out of space?!

Resizing “Circular” Array Queue

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• enqueue Procedure:

• dequeue Procedure:

• isEmpty Procedure:

4 5 6 7321 80 9

74385
front=0

back=5

enqueue(x){
 if (size == queue.length-1) {resize();}
 queue[back] = x;
 back = (back + 1) % queue.length;
 size+=;
} dequeue(){

 /= Assumes queue is not empty
 first = queue[front];
 front = (front + 1) % queue.length;
 size-=;
 return first;
}isEmpty(){

 return size == 0;
}

How do you resize?

That’s for Exercise 0!

Linked List vs. Circular Array

• Let’s Summarize the benefits and drawbacks of each

ADT: Stack

• What is it?
• A “Last In First Out” (LIFO) collection of items (sometimes called FILO)

• What operations do we need?
• push

• Add a new item onto the stack

• peek
• Return the value of the most recently pushed item

• pop
• Return the value of the most recently pushed item and remove it from the stack

• isEmpty
• Indicate whether or not there are items still on the stack

Motivating Example

Let’s design an algorithm

• I have a pile of string
• I have one end of the string in-hand
• I need to find the other end in the pile
• How can I do this efficiently?

Algorithm Ideas

• Whatcha got?

My Approach

13

End-of-Yarn Finding Algorithm
Set aside the already-obtained beginning
Do the following until you find the end:
 Separate the pile of yarn into 2 piles
 Label A to be the pile that the beginning enters
 Label B to be the other pile
 Count the number of strands crossing the piles
 If count is even, set the pile to be A
 Otherwise set the pile to be B.

A
B

14

Resource Analysis

Why do resource analysis?

• Allows us to compare algorithms, not implementations
• Using observations necessarily couples the algorithm with its implementation

• If my implementation on my computer takes more time than your
implementation on your computer, we cannot conclude your algorithm is
better

• We can predict an algorithm’s running time before implementing

• Understand where the bottlenecks are in our algorithm

Process for resource Analysis

• End Result: A function which maps the algorithm’s input size to count
of resources used
• Input of the function: sizes of the input

• Number of characters in a string, number of items in a list, number of pixels in an image

• Output of the function: counts of resources used
• Number of times the algorithm adds two numbers together, number times the algorithm

does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time

• Important note: Make sure you know the “units” of your input and
output!

Resource Analysis – Worst Case Running Time

• If an algorithm has a worst case running time of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will do 𝑓(𝑛) “operations”

• I.e. 𝑓(𝑛) gives the maximum operation count from among all inputs of size 𝑛

Resource Analysis – Best Case Running Time

• If an algorithm has a best case running time of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “best” one will do 𝑓(𝑛) “operations”

• I.e. 𝑓(𝑛) gives the minimum operation count from among all inputs of size 𝑛

Resource Analysis – Worst Case Space

• If an algorithm has a worst case space of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will use 𝑓(𝑛) bits of memory

• I.e. 𝑓(𝑛) gives the maximum amount of memory required from among all
inputs of size 𝑛

Analysis Process From 123/143

• Count the number of “primitive operations”
• +, -, compare, arr[i], arr.length, etc

• Write that count as an expression using 𝑛 (the input size)

• Put that expression into a “bucket” by ignoring constants and “non-
dominant” terms, then put a 𝑂() around it.
• 4𝑛2 + 8𝑛 − 10 ends up as 𝑂 𝑛2

•
1

2
𝑛 + 80 ends up as 𝑂 𝑛

• 𝑛(𝑛 + 1) ends up as 𝑂 𝑛2

Analysis Process For Us

• Count the number of chosen operation(s)
• Factors to consider when choosing which operation(s) to count

• Necessity: should be necessary for solving the problem

• Frequency: should be the most frequently done (up to a constant factor)

• Magnitude: should be expensive to perform each chosen operation

• Write that count as an expression using 𝑛 (the input size)

• Put an asymptotic bound on it (one of 𝑂, Ω, Θ)
• More on this next class

Worst Case Running Time - ExamplemyFunction(List n){

 b = 55 + 5;

 c = b / 3;

 b = c + 100;

 for (i = 0; i < n.size(); i++) {

 b++;

 }

 if (b % 2 == 0) {

 c++;

 }

 else {

 for (i = 0; i < n.size(); i++) {

 c++;

 }

 }

 return c;

}

Questions to ask:
• What are the units of the input size?

• What are the operations we’re counting?

• For each line:
• How many times will it run?
• How long does it take to run?
• Does this change with different inputs?

• Answer:

Worst Case Running Time - ExamplemyFunction(List n){

 b = 55 + 5; // 1

 c = b / 3; // 1

 b = c + 100; // 1

 for (i = 0; i < n.size(); i++) { // 1, n times

 b++; // 1

 }

 if (b % 2 == 0) { // 1

 c++; // 1

 }

 else {

 for (i = 0; i < n.size(); i++) { // 1, n times

 c++; // 1

 }

 }

 return c;

}

Questions to ask:
• What are the units of the input size?

• # of items in the list
• What are the operations we’re counting?

• Arithmetic ops (+-*/)
• For each line:

• How many times will it run?
• How long does it take to run?
• Does this change with different inputs?

• Answer:
• 3 + 2𝑛 + 1 + 2𝑛 = 4𝑛 + 4
• 𝑂(𝑛)

Worst Case Running Time – Example 2
beAnnoying(List n){

 List m = [];

 for (i=0; i < n.size(); i++){

 m.add(n[i]);

 for (j=0; j< n.size(); j++){

 print (“Hi, I’m annoying”);

 }

 }

}

Questions to ask:
• What are the units of the input size?

• What are the operations we’re counting?

• For each line:
• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Worst Case Running Time – Example 2
beAnnoying(List n){

 List m = [];

 for (i=0; i < n.size(); i++){ // n times

 m.add(n[i]);

 for (j=0; j< n.size(); j++){ // n times

 print (“Hi, I’m annoying”); // 1

 }

 }

}

Questions to ask:
• What are the units of the input size?

• # items
• What are the operations we’re counting?

• Adding or printing
• Printing: 𝑂 𝑛2

• For each line:
• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Worst Case Running Time – General Guide

• Add together the time of consecutive statements

• Loops: Sum up the time required through each iteration of the loop
• If each takes the same time, then [time per loop × number of iterations]

• Conditionals: Sum together the time to check the condition and time
of the slowest branch

• Function Calls: Time of the function’s body

• Recursion: Solve a recurrence relation

Defining your running time function

• Worst-case complexity:
• max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
• min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
• avg number of steps algorithm takes on random inputs (distribution-dependent)

• Amortized complexity:
• max total number of steps algorithm takes on M “most challenging” consecutive

inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

• What is the worst case running
time of add?
• Input size: size of “this”

• Operations counted: indexing

• 𝑂 𝑛

public void add(int value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

 int[] oldData = data;

 data = new int[data.length*2];

 for(int i = 0; i < oldData.length; i++)

 data[i] = oldData[i];

}

public void add(int value){

if(data.length == size)

resize();

data[size] = value;

size++;

}

private void resize(){

int[] oldData = data;

data = new int[data.length*2];

for(int i = 0; i < oldData.length; i++)

data[i] = oldData[i];

}

Amortized Complexity Example - ArrayList

• Amortized Analysis Idea:
• Suppose we have a program that

in total does 𝑛 adds.

• How much time was spent “on
average” across all 𝑛?

• Let 𝑐 be the initial size of data
• The first 𝑐 adds take: 𝑐 + 𝑐 = 2𝑐

• The next 2𝑐 adds: 2𝑐 + 2𝑐 = 4𝑐

• The next 4𝑐 adds: 4𝑐 + 4𝑐 = 8𝑐

• Overall:
14𝑐

7𝑐
= 2𝑐

Every time we resize, we earn
data.length more adds
before the next resize!

Amortized Analysis Analogy

• Suppose I’d like to park in a lot where they charge $10 per day to park

• If you are caught in the lot without paying you are given a warning

• If you get 3 warnings, you are charged a $25 fine, and your warnings
reset.

• Should you actually pay to park?
• If you pay every day then you pay an average of $10 per day

• If you do not pay then for every three days parking costs $0+$0+$25, for an
average of $8.33 per day
• This is an amortized analysis

	Slide 1: CSE 332 Winter 2026 Lecture 2: Algorithm Analysis pt.1
	Slide 2: Announcements
	Slide 3: Linked Queue Data Structure (Algorithms)
	Slide 4: “Circular” Array Queue (Idea)
	Slide 5: “Circular” Array
	Slide 6: “Circular” Array Queue (Algorithms)
	Slide 7: Resizing “Circular” Array Queue
	Slide 8: Linked List vs. Circular Array
	Slide 9: ADT: Stack
	Slide 10: Motivating Example
	Slide 11: Let’s design an algorithm
	Slide 12: Algorithm Ideas
	Slide 13: My Approach
	Slide 14: End-of-Yarn Finding Algorithm
	Slide 15: Resource Analysis
	Slide 16: Why do resource analysis?
	Slide 17: Process for resource Analysis
	Slide 18: Resource Analysis – Worst Case Running Time
	Slide 19: Resource Analysis – Best Case Running Time
	Slide 20: Resource Analysis – Worst Case Space
	Slide 21: Analysis Process From 123/143
	Slide 22: Analysis Process For Us
	Slide 23: Worst Case Running Time - Example
	Slide 24: Worst Case Running Time - Example
	Slide 25: Worst Case Running Time – Example 2
	Slide 26: Worst Case Running Time – Example 2
	Slide 27: Worst Case Running Time – General Guide
	Slide 28: Defining your running time function
	Slide 29: Amortized Complexity Example - ArrayList
	Slide 30: Amortized Complexity Example - ArrayList
	Slide 31: Amortized Analysis Analogy

