

CSE 332 Winter 2026

Lecture 2: Algorithm Analysis

pt.1

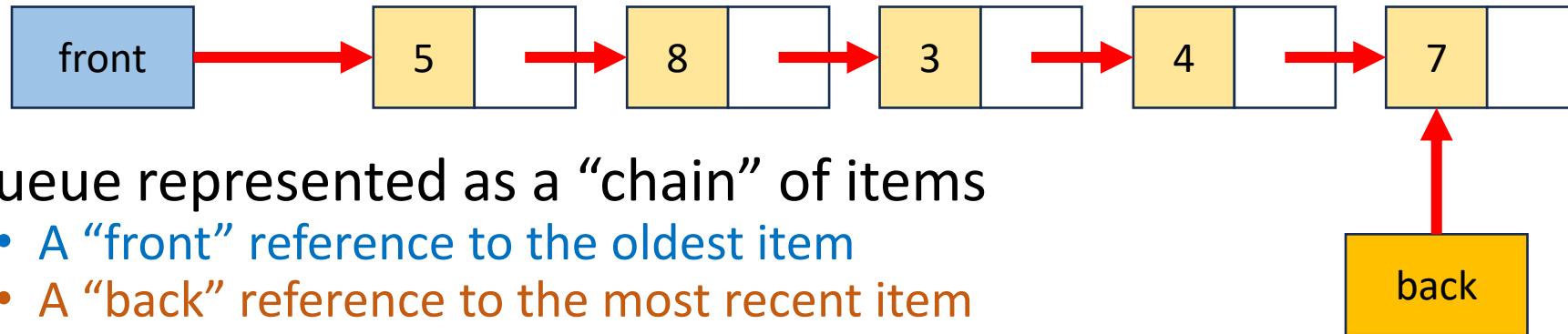
Nathan Brunelle

<http://www.cs.uw.edu/332>

Announcements

- Exercise 0 released
 - Due Wednesday 1/14
 - There are 2 separate gradescope submissions
- Concept check 0 released
 - Helps us to get more familiar with each other!
 - Gradescope submission due 1/15
 - Meet the staff activity due by 1/30
 - Come to any office hours, chat with us, ask us to mark you off for this

Linked Queue Data Structure (Algorithms)



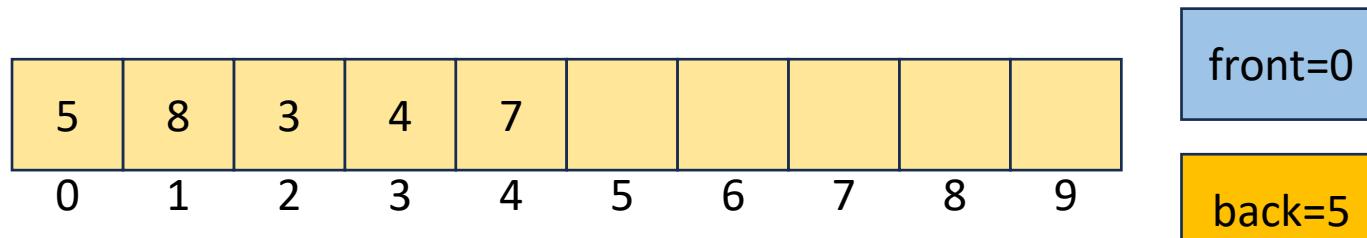
- Queue represented as a “chain” of items
 - A “front” reference to the oldest item
 - A “back” reference to the most recent item
 - Each Node references the item enqueueued after it
- enqueue Procedure:

```
enqueue(x){  
    last = new ListNode(x);  
    back.next = last;  
    back = last;  
}
```
- dequeue Procedure:

```
dequeue(){  
    first = front.value;  
    front = front.next;  
    if (front == null) {back = null;}  
    return first  
}
```
- isEmpty Procedure:

```
isEmpty(){  
    return front == null;  
}
```

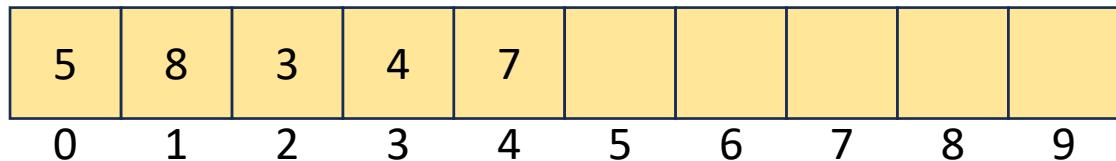
“Circular” Array Queue (Idea)



- Queue represented as an array of items
 - A “front” index to indicate the oldest item in the queue
 - A “back” index to indicate the most recent item in the queue
 - Actually, the first “open” slot in the array
- enqueue Procedure:
- dequeue Procedure:
- isEmpty Procedure:

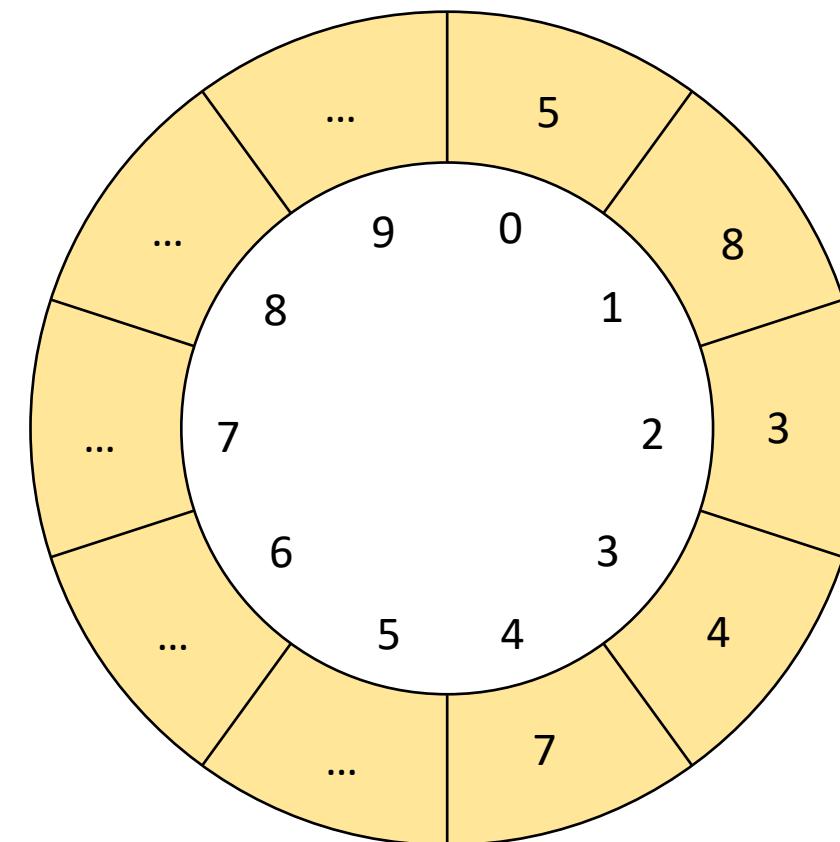
“Circular” Array

- Intuitively, An array of values arranged in a “circle” rather than a line
 - If you go beyond the last index, to wrap back around to 0

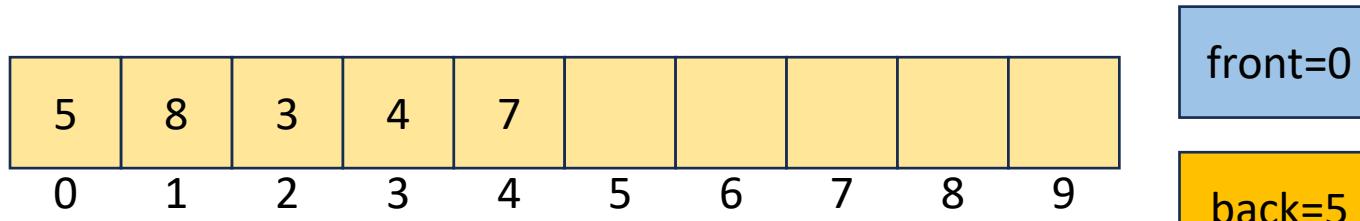


front=0

back=5



“Circular” Array Queue (Algorithms)



- Queue represented as an array of items
 - A “front” index to indicate the oldest item in the queue
 - A “back” index to indicate the most recent item in the queue

- enqueue Procedure:

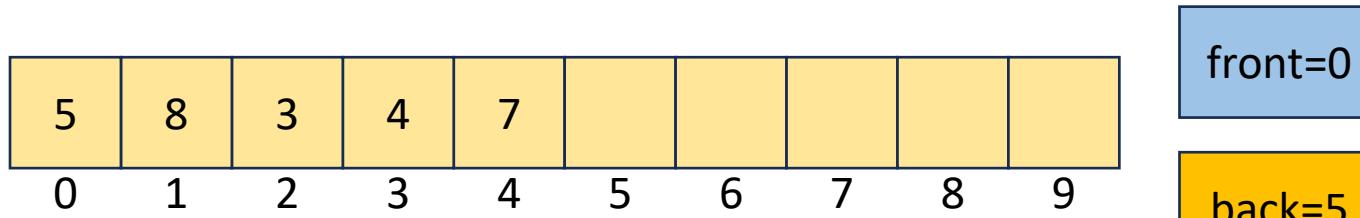
```
enqueue(x){  
    queue[back] = x;  
    back = (back + 1) % queue.length;  
    size++;  
}  
dequeue(){  
    // Assumes queue is not empty  
    first = queue[front];  
    front = (front + 1) % queue.length;  
    size--;  
    return first;  
}
```

- dequeue Procedure:

```
isEmpty(){  
    return size == 0;  
}
```

What if we run out of space?!

Resizing “Circular” Array Queue



- Queue represented as an array of items
 - A “front” index to indicate the oldest item in the queue
 - A “back” index to indicate the most recent item in the queue
- enqueue Procedure:

```
enqueue(x){  
    if (size == queue.length-1) {resize();}  
    queue[back] = x;  
    back = (back + 1) % queue.length;  
    size++;  
}
```
- dequeue Procedure:

```
dequeue(){  
    // Assumes queue is not empty  
    first = queue[front];  
    front = (front + 1) % queue.length;  
    size--;  
    return first;  
}
```
- isEmpty Procedure:

```
isEmpty(){  
    return size == 0;  
}
```

How do you resize?

That's for Exercise 0!

Linked List vs. Circular Array

- Let's Summarize the benefits and drawbacks of each

ADT: Stack

- What is it?
 - A “Last In First Out” (LIFO) collection of items (sometimes called FILO)
- What operations do we need?
 - push
 - Add a new item onto the stack
 - peek
 - Return the value of the most recently pushed item
 - pop
 - Return the value of the most recently pushed item and remove it from the stack
 - isEmpty
 - Indicate whether or not there are items still on the stack

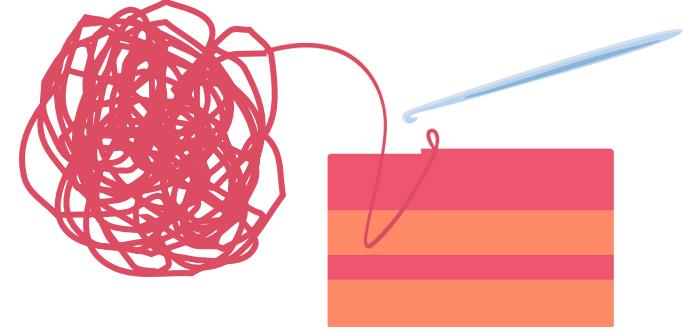
Motivating Example

Let's design an algorithm

- I have a pile of string
- I have one end of the string in-hand
- I need to find the other end in the pile
- How can I do this efficiently?

Algorithm Ideas

- Whatcha got?



My Approach

End-of-Yarn Finding Algorithm

Set aside the already-obtained beginning

Do the following until you find the end:

Separate the pile of yarn into 2 piles

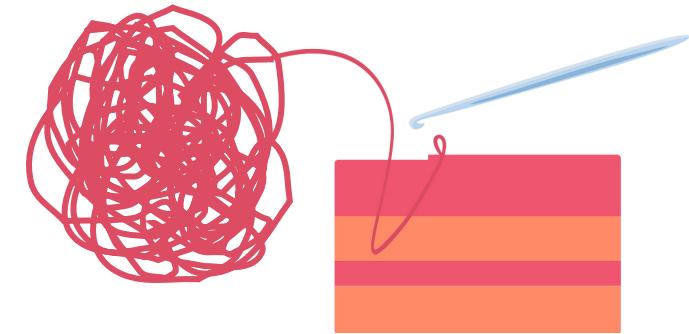
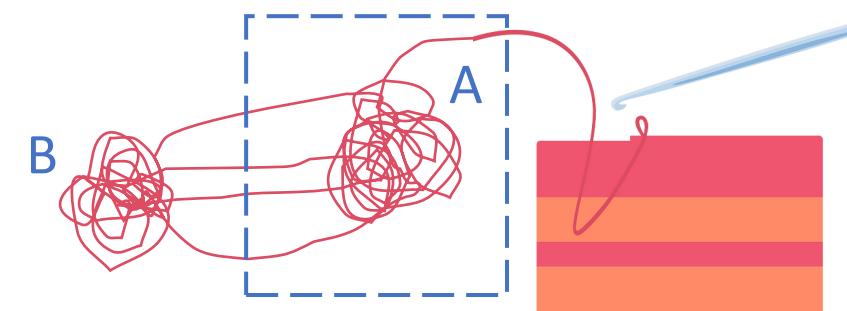
Label A to be the pile that the beginning enters

Label B to be the other pile

Count the number of strands crossing the piles

If count is even, set the pile to be A

Otherwise set the pile to be B.



Resource Analysis

Why do resource analysis?

- Allows us to compare *algorithms*, not implementations
 - Using observations necessarily couples the algorithm with its implementation
 - If my implementation on my computer takes more time than your implementation on your computer, we cannot conclude your algorithm is better
- We can predict an algorithm's running time before implementing
- Understand where the bottlenecks are in our algorithm

Process for resource Analysis

- End Result: A *function* which maps the algorithm's input size to count of resources used
 - Input of the function: **sizes** of the input
 - Number of characters in a string, number of items in a list, number of pixels in an image
 - Output of the function: **counts** of resources used
 - Number of times the algorithm adds two numbers together, number times the algorithm does a $>$ or $<$ comparison, maximum number of bytes of memory the algorithm uses at any time
- Important note: Make sure you know the “units” of your input and output!

Resource Analysis – Worst Case Running Time

- If an algorithm has a worst case running time of $f(n)$
 - Among all possible size- n inputs, the “worst” one will do $f(n)$ “operations”
 - I.e. $f(n)$ gives the maximum operation count from among all inputs of size n

Resource Analysis – Best Case Running Time

- If an algorithm has a **best** case running time of $f(n)$
 - Among all possible size- n inputs, the “**best**” one will do $f(n)$ “operations”
 - I.e. $f(n)$ gives the **minimum** operation count from among all inputs of size n

Resource Analysis – Worst Case Space

- If an algorithm has a worst case space of $f(n)$
 - Among all possible size- n inputs, the “worst” one will use $f(n)$ bits of memory
 - I.e. $f(n)$ gives the maximum amount of memory required from among all inputs of size n

Analysis Process From 123/143

- Count the number of “primitive operations”
 - $+$, $-$, compare, $\text{arr}[i]$, arr.length , etc
- Write that count as an expression using n (the input size)
- Put that expression into a “bucket” by ignoring constants and “non-dominant” terms, then put a $O()$ around it.
 - $4n^2 + 8n - 10$ ends up as $O(n^2)$
 - $\frac{1}{2}n + 80$ ends up as $O(n)$
 - $n(n + 1)$ ends up as $O(n^2)$

Analysis Process For Us

- Count the number of *chosen* operation(s)
 - Factors to consider when choosing which operation(s) to count
 - **Necessity**: should be necessary for solving the problem
 - **Frequency**: should be the most frequently done (up to a constant factor)
 - **Magnitude**: should be expensive to perform each chosen operation
- Write that count as an expression using n (the input size)
- Put an asymptotic bound on it (one of O , Ω , Θ)
 - More on this next class

```
myFunction(List n){  
    b = 55 + 5;  
    c = b / 3;  
    b = c + 100;  
    for (i = 0; i < n.size(); i++) {  
        b++;  
    }  
    if (b % 2 == 0) {  
        c++;  
    }  
    else {  
        for (i = 0; i < n.size(); i++) {  
            c++;  
        }  
    }  
    return c;  
}
```

Worst Case Running Time - Example

Questions to ask:

- What are the units of the input size?
- What are the operations we're counting?
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with different inputs?
- Answer:

```
myFunction(List n){  
    b = 55 + 5; // 1  
    c = b / 3; // 1  
    b = c + 100; // 1  
    for (i = 0; i < n.size(); i++) { // 1, n times  
        b++; // 1  
    }  
    if (b % 2 == 0) { // 1  
        c++; // 1  
    }  
    else {  
        for (i = 0; i < n.size(); i++) { // 1, n times  
            c++; // 1  
        }  
    }  
    return c;  
}
```

Worst Case Running Time - Example

Questions to ask:

- What are the units of the input size?
 - # of items in the list
- What are the operations we're counting?
 - Arithmetic ops (+-* /)
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with different inputs?
- Answer:
 - $3 + 2n + 1 + 2n = 4n + 4$
 - $O(n)$

Worst Case Running Time – Example 2

```
beAnnoying(List n){  
    List m = [];  
    for (i=0; i < n.size(); i++){  
        m.add(n[i]);  
        for (j=0; j< n.size(); j++){  
            print ("Hi, I'm annoying");  
        }  
    }  
}
```

Questions to ask:

- What are the units of the input size?
- What are the operations we're counting?
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with the input size?

Worst Case Running Time – Example 2

```
beAnnoying(List n){  
    List m = [];  
    for (i=0; i < n.size(); i++){ // n times  
        m.add(n[i]);  
        for (j=0; j< n.size(); j++){ // n times  
            print ("Hi, I'm annoying"); // 1  
        }  
    }  
}
```

Questions to ask:

- What are the units of the input size?
 - # items
- What are the operations we're counting?
 - Adding or printing
 - Printing: $O(n^2)$
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with the input size?

Worst Case Running Time – General Guide

- Add together the time of consecutive statements
- Loops: Sum up the time required through each iteration of the loop
 - If each takes the same time, then $[\text{time per loop} \times \text{number of iterations}]$
- Conditionals: Sum together the time to check the condition and time of the slowest branch
- Function Calls: Time of the function's body
- Recursion: Solve a **recurrence relation**

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on “most challenging” input
- Best-case complexity:
 - min number of steps algorithm takes on “easiest” input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (distribution-dependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M “most challenging” consecutive inputs, divided by M (i.e., divide the max total sum by M).

Amortized Complexity Example - ArrayList

```
public void add(int value){  
    if(data.length == size)  
        resize();  
    data[size] = value;  
    size++;  
}  
  
private void resize(){  
    int[] oldData = data;  
    data = new int[data.length*2];  
    for(int i = 0; i < oldData.length; i++)  
        data[i] = oldData[i];  
}
```

- What is the worst case running time of add?
 - Input size: size of “this”
 - Operations counted: indexing
 - $O(n)$

Amortized Complexity Example - ArrayList

```
public void add(int value){  
    if(data.length == size)  
        resize();  
    data[size] = value;  
    size++;  
}  
  
private void resize(){  
    int[] oldData = data;  
    data = new int[data.length*2];  
    for(int i = 0; i < oldData.length; i++)  
        data[i] = oldData[i];  
}
```

Every time we resize, we earn
data.length more adds
before the next resize!

- Amortized Analysis Idea:
 - Suppose we have a program that in total does n adds.
 - How much time was spent “on average” across all n ?
- Let c be the initial size of data
 - The first c adds take: $c + c = 2c$
 - The next $2c$ adds: $2c + 2c = 4c$
 - The next $4c$ adds: $4c + 4c = 8c$
 - Overall: $\frac{14c}{7c} = 2c$

Amortized Analysis Analogy

- Suppose I'd like to park in a lot where they charge \$10 per day to park
- If you are caught in the lot without paying you are given a warning
- If you get 3 warnings, you are charged a \$25 fine, and your warnings reset.
- Should you actually pay to park?
 - If you pay every day then you pay an average of \$10 per day
 - If you do not pay then for every three days parking costs \$0+\$0+\$25, for an average of \$8.33 per day
 - This is an amortized analysis